Production and chemical composition of hydrophytes cultivated in aquaponics

Autores/as

  • Alicia del Rosario Martínez-Yáñez Universidad de Guanajuato
  • Pedro J. Albertos-Alpuche Universidad de Guanajuato
  • Rafael Guzman-Mendoza Universidad de Guanajuato
  • Lidia E. Robaina-Robaina Departamento de Biología, Universidad de Las Palmas de Gran Canaria, España
  • Alfonso Alvarez-Gonzalez División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco
  • Daniel Diaz-Plascencia Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua

DOI:

https://doi.org/10.19136/era.a5n14.1447

Resumen

Aquaponics can be defined as the integration of hydroponic plant production in a recirculating aquaculture system and has been proposed as a sustainable method to control the accumulation of waste produced by fish farming. The objective of the present study was to determine the biomass production and its feed potential of Myriophyllum aquaticum, Limnobium laevigatum, Lemna minor and Salvinia molesta grown in aquaponics. To evaluate the chemical compositions of these species, dry matter, organic matter, crude protein, neutral detergent ber, acid detergent ber, lignin, ash, ether extract, gross energy, calcium, and phosphorus of the aquatic plants were determined. Based on the results of this study, aquatic plants are considered to fulfll most of the nutritional requirements of productive animal species. Therefore, it is feasible to use them as the main ingredient in whole animal rations, with an emphasis on Myriophyllum aquaticum and Lemna minor as alternative food sources for di erent animal species, opening the way to aquaponic fodder production. Aquatic plants are interesting alternative, unconventional feed sources, especially because their high growth rates and nutritional qualities make it feasible to use them for animal consumption. However, Salvinia molesta has no value as fodder, especially because of its lignin concentration, which could affect the fodder digestibility. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alicia del Rosario Martínez-Yáñez, Universidad de Guanajuato

Profesor Investigador

Departamento de Veterinaria y Zootecnia

Pedro J. Albertos-Alpuche, Universidad de Guanajuato

Laboratorio de Acuicultura, Departamento de Veterinaria y Zootecnia.

Rafael Guzman-Mendoza, Universidad de Guanajuato

Departamento de Agronomia

Citas

ANKOM (2005) Determining Acid Detergent Lignin in Beakers, ANKOM Technology Method 8. ANKOM Technology, Macedon, NY. https://www.ankom.com/sites/default/ les/document- les/Method_8_ Lignin_in_beakers_3_13_13.pdf. Date consulted: 21 october, 2016.

ANKOM (2014a) Neutral detergent ber in feeds -Filter bag technique (for A200 and A200I), ANKOM Tech- nology Method 6. ANKOM Technology, Macedon, NY. https://www.ankom.com/sites/default/ les/do- cument- les/Method_6_NDF_Method_A200_RevE_11_04_14.pdf. Date consulted: 21 october, 2016.

ANKOM (2014b) Acid detergent ber in feeds -Filter bag technique (for A200 and A200I), ANKOM Technology Method 5. ANKOM Technology, Macedon, NY. https://www.ankom.com/sites/default/ les/document- les/Method_5_ADF_Method_A200_RevE_11_04_14.pdf Date consulted: 21 oc- tober, 2016.

Antezana W, Calvet S, Beccaccia A, Ferrer P, De Blas C, García-Rebollar P, et al. (2015) E ects of nutrition on digestión e ciency and gaseous emissions form sluring in growing pigs; III. In uence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Animal Feed Science and Technology 209: 128-136.

AOAC (1995) Method 942.05. Association of O cial Analytical. In: Cunni P (ed) Oficial methods of analysis of AOAC International Association of Oficial Analytical Chemists. Washington, DC, USA. 1200p.

AOAC (2000) O cial methods of analysis of AOAC International. Horwitz W (ed). AOAC International Association of Oficial Analytical Chemists. Washington, DC, USA. 2200p.

Aponte H, Segura C, Francia JC (2013) Análisis químico proximal de Limnobium laevigatum y su potencial para su uso como forraje. Científica 10: 158-167.

Balzarini MG, Gonzalez L, Tablada M, Casanoves F, Di Rienzo JA, Robledo CW (2008) InfoStat, Manual del Usuario. Editorial Brujas. Córdoba, Argentina. 334p.

Benkeblia N (2014) Polysaccharides, Natural Fibers in Food and Nutrition. Editorial CRC Press. United Kingdom. 413p.

Corti P, Schlatter RP (2002) Feeding ecology of the Black-necked Swan Cygnus melancoryphus in two wetlands of southern Chile. Neotropical Fauna Environment 37: 9-14.

Crow GE (2007) Haloragaceae. In: Hammel BE, Grayum MH, Herrera C, Zamora N (ed). Manual de Plantas de Costa Rica. Volumen VI, Missouri Botanical Garden Press, USA. pp: 1-2.

Edmond CR (1969) Direct determination of uoride in phosphate rock samples using specific ion electrode. Analytical Chemistry 41: 1327-1328.

Elizondo-Salazar JA (2008) Requerimientos nutricionales de cabras lecheras II. Proteína metabolizable. Agronomía Mesoamericana 19: 123-130.

Espinosa MEA, Angel SCA, Mendoza CJM, Albertos APJ, Alvarez-Gonzalez CA, Martínez-Yañez R (2016) Herbaceous plants as part of biological lter for aquaponics system. Aquaculture Research 47: 1716- 1726.

Forster RP, Goldstein L (1969) Formation of excretory products. In: Hoar WS, Randall JC (ed) Fish Physiology. Volumen I. Academic Press, New York, USA. pp: 313-350.

Furuya WM (2010) Tabelas Brasileiras para a nutrição de tilapias. Grá ca Editora, Toledo, Brasil. 100p.

Gidenne T (2014) Dietary bres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal 9: 227-42.

González-Pech PG, Torres-Acosta JF, Sandoval-Castro CA, Tun-Garrido J (2015) Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season: The same menú consumen di erently. Small Ruminant Research 133: 128-134.

Hou Y, Bai Z, Lesschen JP, Staritsky IG, Sikirica N, Ma L, et al. (2016) Feed use and nitrogen excretion of livestock in EU-27. Agriculture, Ecosystems and Enviroment 218: 232-244.

Hussain F, Durrani MJ (2009) Nutritional evaluation of some forage plants from Harboi Rangeland, Kalat, Pakistan. Pakistan Journal of Botany 41: 1137-1154.

Jampeetong A, Brix H, Kantawanichkul S (2012) E ects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquatic Botany 97: 10-16.

Karcher DM, Jones DR, Abdo Z, Zhao Y, Shepherd TA, Xin H (2015) Impact of comercial housing systems and nutrient and energy intake on laying hen performance and egg quality parameters. Poultry Science 94: 485-501.

Landesman, L Fedler C, Duan R. (2010) Plant nutrient phytoremediation using duckweed. In: Ansari AA, Sarvajeet SG, Lanza GR, Rast W (ed) Eutrophication: Causes, consequences and control. Vol 1, pp: 341-354.

Leterme P, Londoño AM, Muñoz JE, Súarez J, Bedoya CA, Sou rant WB, et al. (2009) Nutritional value of aquatic ferns (Azolla liculoides Lam. and Salvinia molesta Mitchell) in pigs. Animal Feed Science and Technology 149: 135-148.

Llanes J, Toledo J, Fernández I, Lazo de la Vega JM (2006) Nutrición y alimentación de tilapias. Revista de la Asociación Cubana de Producción Animal 4: 51-54.

Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 de las especies exóticas invasoras más dañinas del mundo. Global Invasive Species Database. http://www.iucngisd.org/gisd/pdf/100Spanish.pdf. Date consulted: 10 february, 2017.

Ly J, Samkol P, Preston TR (2002) Nutritional evaluation of aquatic plants for pigs: pepsin/pancreatin di- gestibility of six plant species. Livestock Research for Rural Development 14(1). http://www.lrrd.cipav. org.co/lrrd14/1/ly141a.htm. Date consulted: 23 March 2018.

McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. Gleneden Beach, Oregon, USA. 294p.

NRC (2001) Nutrient Requirements of Dairy Cattle. National Research Council. National Academy Press. Washington, D.C., USA. 408p.

Neutzling FB, Lovatto PA, Nogara RP, de Oliveira V, Rigon RC, Lehnen CR (2015) Modeling performance and nutritional requirements of pigs lots during growth and nishing. Ciência Rural Santa Maria 45: 1841-1847.

Nie HT, Zhang H, You JH, Wang F (2015) Determination of energy and protein requirement for maintenance and growth and evaluation for the e ects of gender upon nutrient requirement in Dorper x Hu Crossbred Lambs. Tropical Animal Helth and Production 47: 841-53.

Oliveira CD, Souza AK, Dos Santos R, Veloso da Mata VJ, Sampaio OL, Gomes DI, Mezzomo R (2016) Body composition and energy and protein nutritional requirements for weight gain in Santa Ines crossbred sheep. Tropical Animal Health and Production 48: 683-688.

Olkowski B, Charuta A, Radzki R, Bienko M, Toczko R (2016) Skeletal response to diet with soya vean sedes used as primary source of protein in growing broiler chickens. Journal of Animal Physiology and Animal Nutrition 100: 731-737.

Partida de la Peña JA, Braña VD, Jiménez SH, Ríos RF, Buendía RG (2013) Producción de carne ovina, Cen- tro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal. Ajuchitlan, Querétaro. Libro Técnico No. 5. 116p.

Patra BC, Maity J, Debnath J, Patra S (2002) Making aquatic weeds useful II: Nymphoides cristatum (Roxb.) O. Kuntze as feed for an Indian major carp Labeo rohita (Hamilton). Aquaculture Nutrition 8: 33-42.

Rakocy JE (2010) Aquaponics, integrating sh and plant culture. In: Timmons MB, Ebeling JM (ed) Recirculating Aquaculture. Cayuga Aqua Ventures. USA. pp: 807-864.

Reyes DPP, González SR, Romero CO, Ponce-Palafox JT, Peillón VO, Castillo-Vargasmachuca S, et al. (2011) Producción de la macró ta acuática Lemna perpusilla utilizando agua residual de una instalación porcina, con propósitos para producción de biomasa para acuacultura. Biociencias 1: 17-27.

Rodrigues RT, Chizzotti ML, Martins SR, da Silva IF, Queiroz MA, Silva TS, et al. (2016) Energy and protein requirement of non-descript breed hair lambs of di erent sex clases in the semiarid región of Brazil. Tropical Animal Health and Production 48: 87-94.

Romero C, Nicodemus N, García-Rebollar P, García-Ruiz AI, de Blas C (2009) Dietary level of bre and age at weaning a ect the proliferation of Clostridium perfringens in the caecum, the incidence of epizootic rabbit enteropathy and the performance of fattening rabbits. Animal Feed Science and Technology 153: 131-140.

Rossow HA, Aly SS (2013) Variation in nutrients formulated and nutrients supplied on 5 California dairies. Journal of Dairy Science 96: 7371-7381.

Salas-Pérez L, Preciado-Rangel P, Esparza-Rivera JR, Álvarez-Reyna VP, Palomo-Gil A, Rodríguez-Dimas N, Márquez-Hernández C (2010) Rendimiento y calidad de forraje hidropónico producido bajo fertilización orgánica. Terra Latinoamericana 28: 355-360.

San Martín C, Boetscher C (2003) Importancia ecológica de la hetero lia en Limnobium laevigatum. Boletín de la Sociedad Argentina de Botánica (Supl): 131-132.

Sinha RK (2004) Modern Plant Physiology. Alpha Science International, India. Pp: 620.

Sorensen P, Norgaard JV (2016) Star sh (Asterias rubens) as feed ingredients for piglets. Animal Feed Science and Tecnology 211: 181-188.

Souza AP, Medeiros AN, Carvalho FFR, Costa R, Ribeiro LPS, Bezerra AB, et al. (2014) Energy requirements for maintenance and growth of Canindé goat kids. Small Ruminant Research 121: 255-261.

Thiex NJ, Anderson S, Gildemeister B (2003) Crude fat, hexanes extraction, in feed, cerealgrai, and forage (Randall/Soxtec/Submersion Method): Collaborative Study. Journal of AOAC International 86: 899- 908.

Varela de AAM, Lopes DC, Motta FW, Santiago RH, De Quiroz AC, Sales PE, et al. (2003) Performance and carcass characteristics of rabbits fed diets with di erents starch levels and ber sources. Revista Brasileira de Zootecnia 32: 1311-1320.

Watson SW (1971) Taxonomic considerations of the family Nitrobacteraceae Buchanan. International Journal of Systematic and Evolutionary Microbiology 21: 254-270.

Wersal RM, Madsen JD (2011) In uences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.) Verdc. Hydrobiologia 665: 93-105.

Wilkonson SJ, Selle PH, Bedfor MR, Cowieson AJ (2014) Separate feeding of calcium improves performance and ileal nutrient digestibility in broiler chicks. Animal Production Science 54: 172-178.

Publicado

2018-04-24

Cómo citar

Martínez-Yáñez, A. del R., Albertos-Alpuche, P. J., Guzman-Mendoza, R., Robaina-Robaina, L. E., Alvarez-Gonzalez, A., & Diaz-Plascencia, D. (2018). Production and chemical composition of hydrophytes cultivated in aquaponics. Ecosistemas Y Recursos Agropecuarios, 5(14), 247–257. https://doi.org/10.19136/era.a5n14.1447

Número

Sección

ARTÍCULOS CIENTÍFICOS

Artículos más leídos del mismo autor/a