

ÁREAS COMUNITARIAS PARA LA CONSERVACIÓN DE LOS RECURSOS BIOLÓGICOS DE LA SIERRA MADRE DEL SUR, GUERRERO, MÉXICO

Community areas for the conservation of biological resources in the Sierra Madre del Sur, Guerrero, Mexico

RC Almazán-Núñez , A Almazán-Juárez, F Ruiz-Gutiérrez

(RCAN) Posgrado en Ciencias Biológicas, Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina. México, D.F. 09340, México, oikos79@yahoo.com.mx

(AAJ) Instituto de Investigación Científica, Área Ciencia Naturales, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n. Chilpancingo, Guerrero, 39000, México

(FRG) Laboratorio de Conservación Biológica, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo. Ciudad Universitaria, Carretera Pachuca-Tulancingo km 4.5, Col. Carboneras. Mineral de la Reforma, Hidalgo, 42184, México.

> Artículo recibido: 08 de agosto de 2009, aceptado: 20 de diciembre de 2011

RESUMEN. A partir de ordenamientos territoriales comunitarios (OTC) en siete ejidos ubicados en la Sierra Madre del Sur (SMS) de Guerrero, se caracterizó el estado actual de sus recursos biológicos y se establecieron áreas comunitarias para la conservación utilizando como criterios principales: 1) las especies endémicas y en alguna categoría de riesgo de plantas vasculares y vertebrados terrestres, 2) la vegetación y su importancia representada por los bienes y servicios que ofrece, y 3) los usos actuales que los pobladores hacen de su territorio. Se delimitaron un total de 10 601 ha para su conservación (14.2%), de las 74 401 que cuentan los siete ejidos en su conjunto. La riqueza biológica entre los ejidos es de 605 especies de plantas vasculares, 15 anfibios, 50 reptiles, 201 aves y 69 mamíferos. Dentro de las áreas propuestas a conservación se registraron 86 especies en riesgo y 55 especies endémicas a México de plantas y vertebrados terrestres. El bosque mesófilo de montaña es el tipo de vegetación que predomina en las áreas de conservación. Dado que la red de áreas naturales protegidas en México no está homogéneamente distribuida, las áreas de conservación comunitaria son a escala local, una alternativa viable para la conservación y valoración de la biodiversidad y los servicios ambientales.

Palabras clave: OTC, áreas de conservación, recursos biológicos, Sierra Madre del Sur, Guerrero.

ABSTRACT. Based on community land regulations (OTC) of seven 'ejidos' located in the Sierra Madre del Sur (SMS) in Guerrero, the present state of the biological resources of each ejido was characterised. Community conservation areas were established using as main criteria: 1) plant and terrestrial vertebrate species that are endemic and in a risk category, 2) plants and their importance represented by the goods and services they offer, and 3) the current use the residents make of their territory. A total of 10 601 ha were identified for conservation (14.2%), from the 74 401 of the seven ejidos all together. The biological richness in the ejidos includes 605 plant, 15 amphibian, 50 reptile, 201 bird and 69 mammal species. Within the proposed conservation areas, 86 species at risk and 55 plant and terrestrial vertebrate species endemic to Mexico were recorded. The cloud mountain forest is the predominant type of vegetation in the conservation areas. Given that the network of protected natural areas in Mexico is not homogeneously distributed, the communitarian conservation areas are on a local scale, a possible alternative to conserve and value biodiversity and environmental services.

Key words: OTC, conservation areas, biological resources, Sierra Madre del Sur, Guerrero.

INTRODUCCIÓN

En países con gran diversidad biológica y mayoritariamente subdesarrollados como México, muchos de los problemas relacionados con el aprovechamiento de los recursos naturales que aquejan a las comunidades rurales, derivan de una errónea o nula planificación en el uso del suelo (Dirzo 1990;

Challenger 1998). En este contexto, los ordenamientos territoriales en comunidades indígenas o ejidos campesinos, son esencialmente importantes ya que en estas regiones es donde se concentran las áreas del país de mayor importancia biológica (Bocco et al. 2000; Toledo et al. 2001; Durán 2006), así como más del 80 % del recurso forestal (Toledo 1997). Es por ello, que la integración de este sector social en las acciones de protección y conservación in situ de los recursos naturales se convierte en una actividad preponderante (Barret & Barret 1997; Pteiffer & Uril 2003). Esto debido a que el éxito de un diagnóstico encaminado a obtener un uso óptimo de los recursos naturales especialmente en ordenamientos comunitarios depende en gran medida del grado de participación que se obtenga de la población (Gama et al. 2003; Negrete & Bocco 2003; Almazán-Juárez et al. 2004; Orozco 2006).

Una de las regiones que merece especial atención por su diversidad biológica es la Sierra Madre del Sur (SMS) del estado de Guerrero, la cual presenta una orografía muy accidentada dando origen a una gran cantidad de taxones, algunos de los cuales son de distribución restringida a esta sierra. Por ejemplo, en plantas Stelis desantiagoi (Solano-Gómez & Salazar 2007), en anfibios Pseudoerycea amuzga (Pérez-Ramos & Saldaña-de la Riva 2003), en reptiles Xenosaurus penai (Pérez-Ramos et al. 2000), en aves Lophornis brachylophus (Moore 1949) y en mamíferos Sylvilagus insonus (Nelson 1904). Por esta razón, la SMS ha sido considerada como prioritaria para su conservación a nivel nacional (Arriaga et al. 2000) e internacional (Sttatersfield et al. 1998).

Sin embargo, gran parte de esta región exhibe agudos problemas de deterioro ambiental (Cervantes et al. 1996), como consecuencia principal de la creciente deforestación, cuyos orígenes fundamentales son la ampliación de la frontera agropecuaria, el aprovechamiento extractivo de los recursos forestales (Carabias et al. 1993) y los asentamientos humanos (Landa et al. 1997). Lo anterior, debido a una mala planificación en el uso del suelo, ya que la mayoría de los núcleos agrarios de esta región carecen de ordenamientos territoriales comunitarios (OTC) o de algún otro plan rector de planificación ambien-

tal. Por ello, es conveniente que se definan los tipos de vegetación que desde el punto de vista de su función, en la producción de satisfactores ambientales y el mantenimiento de la biodiversidad, se decreten a conservación, sin perder de vista los beneficios que éstos pueden derivar a sus propietarios (Ghimire & Pimbert 1997; Ortega-Escalona 2001).

A partir de OTC realizados en siete ejidos situados dentro de la SMS del estado de Guerrero, se caracterizó el estado actual de sus recursos biológicos. Con esta información se delimitaron áreas de conservación, utilizando como criterios principales: 1) las especies endémicas y en alguna categoría de riesgo de plantas vasculares y vertebrados terrestres, 2) la vegetación, medida por su cobertura y por los bienes y servicios ambientales que ofrece, y 3) los usos actuales que los pobladores hacen de su territorio. Debido a que la información generada en los OTC conlleva también describir los componentes social, económico y físico así como a definir las políticas de uso del suelo, en este estudio sólo se describe el componente biológico desde el punto de vista de su conservación.

MATERIALES Y MÉTODOS

Los siete ejidos estudiados que se localizan a lo largo de la SMS en el estado de Guerrero, son: Petatlán, Xocomanatlán, San Vicente, San Cristóbal, Santa Rosa, El Durazno y Corrales (Figura 1). La descripción geográfica y ambiental de cada ejido se detalla en la Tabla 1.

Durante julio del 2003 a febrero del 2007 desarrollamos trabajo de campo en los ejidos estudiados. En aproximadamente tres meses en cada uno de los ejidos, se realizaron observaciones y colectas de campo mediante métodos convencionales de plantas (Lot & Chiang 1986), anfibios y reptiles (Flores-Villela et al. 1995), aves (Ralph et al. 1996) y mamíferos (Romero-Almaraz et al. 1999; Aranda 2000), en los diferentes tipos de vegetación representativos de la zona (Tabla 1). Con esto se estableció la presencia de especies endémicas y/o en alguna categoría de riesgo de acuerdo con la NOM-059-SEMARNAT-2010 (DOF 2010), cuyo listado sirvió como uno de los criterios para establecer las zonas

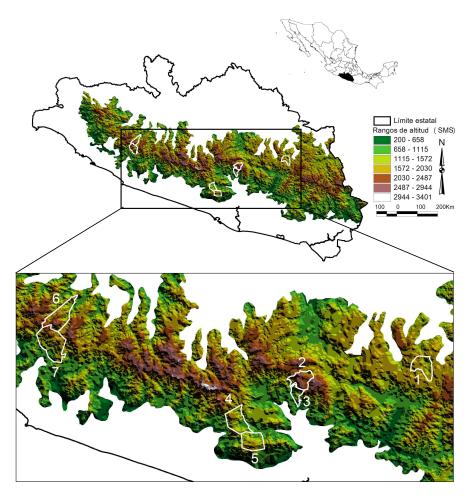


Figura 1. Ubicación geográfica de los siete ejidos en la SMS, Guerrero, México. 1) Petatlán, 2) Xocomanatlán, 3) San Vicente, 4) San Cristóbal, 5) Santa Rosa, 6) El Durazno, 7) Corrales. El modelo digital de elevación se generó a partir de las curvas de nivel (cada 200 m) de CONABIO (http://www.conabio.gob.mx).

Figure 1. Geographic location of the seven ejidos in the SMS, Guerrero, Mexico. 1) Petatlán, 2) Xocomanatlán, 3) San Vicente, 4) San Cristóbal, 5) Santa Rosa, 6) El Durazno, 7) Corrales. The digital elevation model was generated using the topographic lines (at every 200 m) published by CONABIO (http://www.conabio.gob.mx).

de conservación.

La vegetación presente en cada ejido, su cobertura, estado de conservación y la importancia que representa por los bienes y servicios que ofrece, fue también otro criterio utilizado para establecer las zonas de conservación. Para ello, se delimitaron las áreas de vegetación presentes en cada ejido utilizando cartas de uso del suelo y vegetación escala 1: 50 000. El mapa se actualizó mediante la interpretación de ortofotos escala 1: 20 000 (INEGI 1998) e imágenes de satélite de Google Earth. Se hicieron recorridos de campo lo que permitió una mejor fo-

tointerpretación de cada área ejidal como sus tipos de vegetación, nivel de cobertura y las actividades agropecuarias. La delimitación de las zonas de conservación, se realizó con ayuda de un Sistema de Información Geográfica (SIG) Arc View v. 3.2 (ES-RI 2000).

Debido a que en los últimos años la participación social ha sido un aspecto fuertemente asociado a la conservación (Pteiffer & Uril 2003; Durán 2006), el trabajo de campo incluyó 35 talleres participativos (cinco talleres en cada ejido y uno para cada sector: agrícola, pecuario, forestal, socio-

Tabla 1. Descripción de los ejidos estudiados en la SMS de Guerrero. **Table 1.** Description of the studied ejidos in the SMS of Guerrero.

				Ejidos			
	Petatlán	Xocomanatlán	San Vicente	San Cristóbal	Santa Rosa	El Durazno	Corrales
Región	La Montaña	Centro	Centro	Centro	Costa	Tierra	Costa
Socioeconómica					Grande	Caliente	Grande
Municipio	Atlixtac	Chilpancingo	Chilpancingo	Chilpancingo	Coyuca de Benítez	Coyuca de Catalán	Petatlán
Coordenadas	17°32'20"N;	17°31'08''N;	"17°27'02"N	17°14'20"N;	17°09'55"N;	17°43'48"N;	17°33'56"N;
geográficas	98°58'19''W	99°44'39''W	99°43'37"W"	100°00'58''W	99°56'36''W	100°48'55''W	100°52'49''W
Altitud media (m)	1100	1800	1600	875	1130	1800	1300
Pendiente media (o)	22	26	23	23	21	25	23
Clima	Cálido	Templado	Semicálido	Semicálido	Cálido sub-	Templado	Semicálido
predominante	subhúmedo	subhúmedo	subhúmedo	subhúmedo	húmedo	subhúmedo	subhúmedo
Temperatura media anual (°C)	21	18	18	21	24	19	21
Precipitación media anual (mm)	1000	1400	1250	1700	1500	1400	1500
Tipos de	Leptosol,	Acrisol v	Luvisol,	Acrisol,	Acrisol,	Acrisol,	Luvisol,
suelo	Regosol y Fluvisol	Litosol	Litosol y Acrisol	Regosol y Feozem	Luvisol y Feozem	Regosol, Cambisol	Cambisol y Acrisol
Tipos de vegetación	BE, BTC,	BP,BE,	BP, BPE,	BMM, BE,	BMM, BE,	BPOE,	BPE, BPO,
(sensu Rzedowski	BEP, BJ,	BPE, BEP,	BE	BPE, BTC	BEP, BP,	BOE,	BPCO,
1978) ¹	BPE	BA, BMM		, -	BG, BTC, BPE	BPE, BE, BMM	BTS, BMM

¹ BE: bosque de encino, BTC: bosque tropical caducifolio, BEP: bosque de encino-pino, BJ: bosque de Juniperus, BPE: bosque de pino-encino, BP: bosque de pino, BA: bosque de aile, BMM: bosque mesófilo de montaña, BG: bosque en galería, BPOE: bosque de pino-oyamel-encino, BOE: bosque de oyamel-encino, BPO: bosque de pino-oyamel, BPCO: bosque de pino-cedro-oyamel, BTS: bosque tropical subcaducifolio.

económico y biológico). De manera particular, en el taller del medio biológico los representantes de las comunidades dibujaron sus propuestas para las áreas de conservación, las cuales fue consensuadas con la propuesta realizada por el grupo investigador y delimitada a partir de los criterios descritos con anterioridad. Ambas propuestas fueron analizadas, para modificar, unificar y aprobar las áreas de conservación.

RESULTADOS

En los ejidos estudiados de la SMS de Guerrero, se registró un total de 605 especies de plantas vasculares, 15 anfibios, 50 reptiles, 201 aves y 69 mamíferos (Tabla 2). El ejido El Durazno presentó la mayor riqueza de plantas y vertebrados terrestres con 373 especies, mientras que San Vicente fue el que menos riqueza presentó con 195 especies (Tabla 2).

De la superficie total de los siete ejidos en

conjunto (74 401 ha), se delimitaron 10 601 ha como áreas para la conservación, lo que representa el 14.2 % del total de la superficie (Tabla 3). El ejido con mayor extensión territorial destinada a conservación es Santa Rosa con 3 008 ha, de las cuales, el 36.3 % corresponde a bosque de pino-encino, 21.4 % a bosque de encino-pino, 17.3 % a bosque de pino, 16 % a bosque de encino, 6.9 % a bosque mesófilo de montaña, 1% a bosque en galería y 0.9% a bosque tropical caducifolio. Estas 3 008 ha del ejido Santa Rosa representan 28.3 % del total del área a conservar (10 601 ha). Por otro lado, el ejido con menor superficie destinada a conservación fue San Vicente, con 345 ha, lo que representa 3.2 % de la superficie total a conservar. De esta superficie (345 ha), el bosque de pino ocupa el 100 % (Tabla 3).

El tipo de vegetación mayormente incluido dentro del total de áreas propuestas a conservación (10 601 ha) fue el bosque mesófilo de montaña con 2 343 ha (22.1 %), seguido por el bosque de pino con 1 950 ha (18.4 %), bosque de encino-pino 1 492 ha

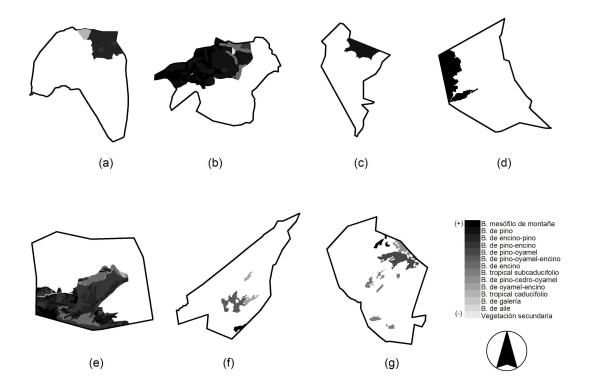


Figura 2. Distribución espacial y tipos de vegetación incluidos en las áreas de conservación de la SMS. a) Petatlán, b) Xocomanatlán, c) San Vicente, d) San Cristóbal, e) Santa Rosa, f) El Durazno, g) Corrales.

Figure 2. Spatial distribution and types of vegetation included in the conservation areas of the SMS. a) Petatlán, b) Xocomanatlán, c) San Vicente, d) San Cristóbal, e) Santa Rosa, f) El Durazno, g) Corrales.

(14.0%), bosque de pino-encino 1 190 ha (11.2%), bosque de pino-oyamel 993 ha (9.3%), bosque de pino-oyamel-encino 686 ha (6.4%), bosque de encino 676 ha (6.3%), bosque tropical subcaducifolio 505 ha (4.7%), bosque de pino-cedro-oyamel 323 ha (3.0%), bosque de oyamel-encino 246 ha (2.3%), bosque tropical caducifolio 147 ha (1.3%), bosque en galería 31 ha (0.3%), bosque de aile 16 ha (0.1%) y por último la vegetación secundaria (con el objeto de recuperar la vegetación primaria) con 3 ha (0.03%). En la Figura 2 se observa la distribución espacial de las áreas de conservación en cada uno de los ejidos y el tipo de vegetación que comprenden.

De acuerdo con la NOM-059-SEMARNAT-2010 (DOF 2010), dentro de las 10 601 ha delimitadas para conservación, el número total de especies de plantas y de vertebrados terrestres en alguna categoría de riesgo es de 86 (Tabla 4), de las cuales, 12 son plantas vasculares (e. g. *Pinus*

chiapensis, Chiranthodendron pentadactylon, Tabebuia chrysantha, Calophyllum brasiliense), seis anfibios (e. g. Lithobates forreri, L. sierramadrensis, Craugastor omiltemanus), 26 reptiles (e. g. Sceloporus adleri, Anolis omiltemanus, Ctenosaura pectinata, Thamnophis chrysocephalus, Ophryacus undulatus), 26 aves (e. g. Dendrortyx macroura, Accipiter striatus, Ara militaris, Myadestes occidentalis, Cyanolyca mirabilis) y 16 mamíferos (e. g. Glaucomys volans, Leopardus wiedii, Panthera onca, Tamandua mexicana).

Por otro lado, se encontró un total de 55 especies endémicas de las cuales una es planta (Acer negundo), seis son anfibios (e. g. Craugastor omiltemanus, Pseudoeurycea bellii), 19 reptiles (e. g. Anolis liogaster, A. omiltemanus, Mesaspis gadovii, Sceloporus adleri), 21 aves (e. g. Ortalis poliocephala, Amazona finschi, Chlorostilbon auriceps, Piculus auricularis, Piranga erythrocephala) y ocho mamíferos (e. g. Cryptotis goldmani, Glossophaga morenoi,

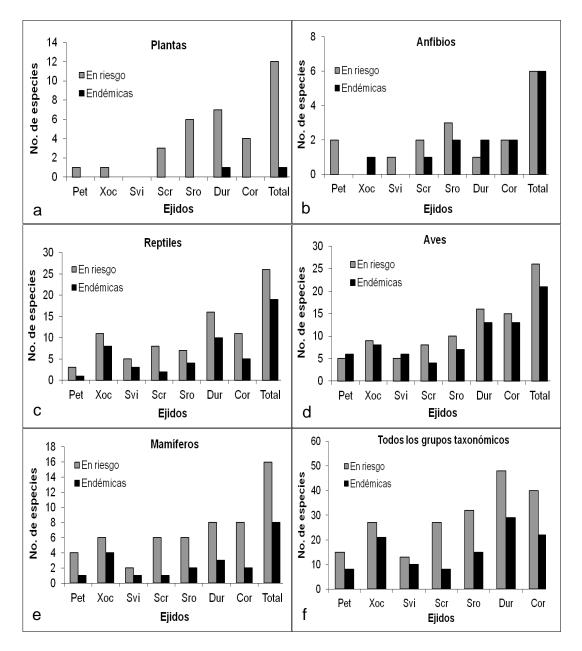
Tabla 2.	Número	de especi	es registrada:	s por ejido	y grupo ta	xonómico	en la SMS	de Guerrero.
			recorded pe					

Ejido	Plantas	Anfibios	Reptiles	Aves	Mamíferos	Total de especies
Petatlán	166	5	16	69	19	275
Xocomanatlán	107	3	22	64	30	226
San Vicente	120	3	15	39	18	195
San Cristóbal	82	9	23	40	43	197
Santa Rosa	115	9	23	78	51	276
El Durazno	201	6	27	98	41	373
Corrales	105	7	28	118	37	295
Total de especies	605	15	50	201	69	

Megadontomys thomasi) (Tabla 4).

Cabe resaltar que de las 86 especies en alguna categoría de riesgo, siete están consideradas en peligro de extinción (de éstas tres son endémicas a México), 37 más se encuentran en la categoría de amenazadas (16 son endémicas a México) y otras 42 están sujetas a protección especial (de las cuales 17 son endémicas al país). De esta manera de las 55 especies endémicas a México presentes en las áreas de conservación propuestas en este estudio,19 de ellas no están consideradas bajo ninguna categoría de riesgo por la NOM-059-SEMARNAT-2010 (DOF 2010). El número de especies en riesgo y endémicas dentro de las áreas de conservación por cada uno de los ejidos estudiados se mencionan en la Figura 3ae. Cabe mencionar que el ejido El Durazno presentó la mayor cantidad de especies en riesgo y endémicas tanto de plantas como de vertebrados terrestres (Figura 3f).

DISCUSIÓN


El estado de Guerrero pese a la gran riqueza biológica que posee al ser considerado entre las cinco entidades del país más diversas en varios grupos de plantas y animales (Flores-Villela & Gérez 1994; Challenger 1998), paradójicamente, es una de las entidades de la República Mexicana más pobremente representadas en cuanto a áreas naturales protegidas (ANP's) se refiere, con apenas 0.36 % del total de su superficie (Flores-Villela & Gérez 1994; Koleff & Moreno 2006). Esto sugiere que el sistema de ANP's existente debe ser complementado por unidades adicionales para proteger la biodiversidad

del estado adecuadamente, sobre todo, cuando muchas de las ANP's en México y particularmente en Guerrero fueron diseñadas con base en criterios escénicos o políticos y no por el contenido de su biodiversidad (Fuller *et al.* 2006).

La riqueza obtenida en los siete ejidos en su conjunto es alta. En plantas vasculares las especies registradas representan 10.1 % del total de especies registradas para Guerrero (Rzedowski 1978), en anfibios 21.4 % (Pérez-Ramos et al. 2000), en reptiles 31.1 % (Pérez-Ramos et al. 2000), en aves 37.2 % (Navarro 1998) y en mamíferos 46.3 % (Almazán-Catalán et al. 2005). El área delimitada para la conservación representa 0.16 % y 0.42 % de la superficie estatal y de la SMS, respectivamente. Estos valores no están muy alejados comparados con los de las cinco ANP's de competencia federal para el estado de Guerrero, las cuales cubren 0.36 % de la superficie estatal (Koleff & Moreno 2006). En cambio, en el contexto nacional existe una amplia diferencia entre la cobertura territorial de ANPs federales terrestres (7.79 % de superficie del país) respecto a las áreas comunitarias para la conservación (0.32 %; Bezaury-Creel & Gutiérrez-Carbonell 2009). Sin embargo, el común denominador de ambos tipos de áreas protegidas es que el régimen de propiedad en más del 60 % es comunal y ejidal (Bezaury-Creel & Gutiérrez-Carbonell 2009), lo que resalta la importancia de estas áreas en las labores de conservación.

De manera particular, en la SMS de Guerrero sólo existe una ANP (el parque nacional Juan N. Álvarez) que cubre tan sólo 0.035 % de su superficie, lo que representa un valor mucho menor a la superficie de conservación delimitada en este estudio (el

Figura 3. Número de especies endémicas y en alguna categoría de riesgo dentro de las áreas de conservación propuestas: a) plantas, b) anfibios, c) reptiles, d) aves, e) mamíferos y f) todos los grupos taxonómicos (plantas vasculares y vertebrados terrestres). La abreviación de los ejidos se menciona como: Pet: Petatlán, Xoc: Xocomanatlán, Svi: San Vicente, Scr: San Cristóbal, Sro: Santa Rosa, Dur: El Durazno, Cor: Corrales.

Figure 3. Number of species that are endemic and in a risk category within the proposed conservation areas: a) plants, b) amphibians, c) reptiles, d) birds, e) mammals and f) all the taxonomic groups (vascular plants and terrestrial vertebrates). The abbreviations for the ejidos are: Pet: Petatlán, Xoc: Xocomanatlán, Svi: San Vicente, Scr: San Cristóbal, Sro: Santa Rosa, Dur: El Durazno, Cor: Corrales.

0.42 % de la extensión de la SMS). Esto sin duda tiene implicaciones importantes en la conservación de los recursos biológicos de la zona, ya que como se observa muchas de las especies registradas están

en alguna categoría de riesgo, además de que son de distribución restringida, razón por la cual son más susceptibles a la pérdida de los hábitats naturales.

Si bien las áreas de conservación en este estu-

Tabla 3. Superficie total y de conservación por ejido en la SMS de Guerrero. **Table 3.** Total and conservation area per ejido in the SMS of Guerrero.

Ejido	Superficie total (ha)	Área de conservación (ha)	% respecto al total del área de conservación (10 601 ha)	en el á	egetación comprendidos irea de conservación o y su cobertura (%)
Petatlán	8 054	985	9.3	BEP BTC BPE	(82.6) (12.0) (5.3)
Xocomanatlán	4 852	2 030	19.1	BP BMM BE BPE BEP BA VS	(53.3) (32.1) (9.5) (2.2) (1.7) (0.7) (0.05)
San Vicente	2 810	345	3.2	BP	(100)
San Cristóbal	9 075	1 172	11	BMM	(100)
Santa Rosa	8 527	3 008	28.3	BPE BEP BP BE BMM BG BTC	(36.3) (21.4) (17.3) (16.0) (6.9) (1.0) (0.9)
El Durazno	17 543	1 060	10	BPOE BOE BMM	(64.6) (23.1) (12.1)
Corrales	23 540	2 001	18.8	BPO BTS BPCO BMM	(49.6) (25.2) (16.1) (9.0)
Total	74 401	10 601	100.00 %		

BEP: bosque de encino-pino, BTC: bosque tropical caducifolio, BPE: bosque de pino-encino, BP: bosque de pino, BMM bosque mesófilo de montaña, BE: bosque de encino, BA: bosque de aile, VS: vegetación secundaria, BG: bosque de galería, BPOE: bosque de pino-oyamel-encino, BOE: bosque de oyamel-encino, BPO: bosque de pino-oyamel, BTS: bosque tropical subcaducifolio, BPCO: bosque de pino-cedro-oyamel.

dio al no contar con una declaratoria oficial carecen de validez legal, es bien sabido que a partir de un OTC las diferentes políticas en relación al uso del suelo (entre ellas la de conservación) pueden adquirir un carácter normativo a diferentes niveles (Orozco 2006). Tal como sucedió con el ejido El Durazno, que presentó la mayor riqueza de plantas y vertebrados terrestres y cuyas políticas de uso del suelo, los criterios de manejo y los proyectos de desarrollo viable para cada área fueron aprobados entre autoridades ejidales y municipales. A nivel local la regla-

mentación en el uso, manejo y conservación de los recursos naturales es incorporada a los reglamentos internos o estatutos comunales de cada ejido o comunidad, con lo cual, en el caso particular de las áreas para la conservación de los recursos naturales es posible determinar el uso y acceso a las diferentes áreas. Por otro lado, es posible también que a solicitud de los ejidos y/o comunidades, estas áreas puedan ser registradas como reservas comunitarias (áreas destinadas voluntariamente a la conservación; Bezaury-Creel & Gutiérrez-Carbonell 2009) ante la

Tabla 4. Lista de plantas y vertebrados terrestres bajo alguna categoría de riesgo y endemismo registrados en las áreas comunitarias para la conservación.

Table 4. List of plants and terrestrial vertebrates that are endemic and in a risk category recorded in the seven ejidos.

Familia	Especies	Riesgo	Endemismo
	Flora		
Aceraceae	Acer negundo var. mexicanum (DC.) Standl	Pr	X
Actinidiaceae	Saurauia serrata DC.	Pr	
Asteraceae	Zinnia violacea Cav.	Α	
Betulaceae	Carpinus caroliniana Walter	Α	
Bignoniaceae	Tabebuia chrysantha (Jacq.) G. Nicholson	Α	
Clusiaceae	Calophyllum brasiliense	Α	
Cyatheaceae	Cyathea bicrenata Liebm.	Pr	
Ericaceae	Comarostaphylis discolor (Hook.) Diggs	Pr	
Fabaceae	Peltogyne mexicana	Α	
Pinaceae	Pinus chiapensis (Martínez) Andresen	Pr	
Podocarpaceae	Podocarpus matudaivar Buchhloz & Gray	Pr	
Sterculiaceae	Chiranthodendron pentadactylon Larreat	Α	
	Anfibios		
Bufonidae	Incilius occidentalis (Camerano 1879)		X
Hylidae	Dendropsophus sartori Smith 1951	Α	X
Craugastoridae	Craugastor omiltemanus (Günther 1900)	Pr	X
Eleutherodactylidae	Eleutherodactylus pallidus (Duellman 1968)	Pr	X
Plethodontidae	Pseudoeurycea bellii (Gray 1850)	Α	X
Ranidae	Lithobates forreri (Boulenger 1883)	Pr	
Ranidae	Lithobates sierramadrensis (Taylor 1939)	Pr	X

Comisión Nacional de Áreas Naturales Protegidas, tal como sucedió con la comunidad de Chichila del municipio de Taxco en Guerrero (Merino 2006).

Se ha sugerido que los objetivos de conservación de la biodiversidad para cada área protegida deben integrarse mejor en el plano del bienestar social, ambiental y económico (Bridgewater 1992). En este sentido, las áreas de conservación delimitadas en este estudio, cumplen a escala local con la función primordial de integrar y hacer partícipe a las comunidades rurales en el modelo (Negrete & Bocco 2003), y de la misma manera, pueden fungir como una herramienta muy funcional que a partir de su culminación los beneficios en función de los proyectos en apoyo, los programas en el mantenimiento y conservación de la biodiversidad serán evidentes.

Un ejemplo de lo anterior son los programas institucionales que operan mediante el pago por los servicios ambientales, los cuales mediante incentivos directos a quienes manejan la tierra, se busca motivar la conservación de los ecosistemas entre sus usos rentables (Carabias et al. 2007, Wunder et al. 2007).

Sin embargo, el principal mérito de las áreas de conservación en los OTC subyace en la conservación de los recursos biológicos que allí se encuentran, ya que existe un mejor conocimiento sobre la distribución de la riqueza, endemismo y las especies en riesgo, los cuales son criterios determinantes para la propuesta y establecimiento de nuevas áreas protegidas (Ceballos *et al.* 2002).

De esta forma, en un área protegida o de conservación se busca que exista una representación de la máxima biodiversidad posible (Pressey et al. 1993). Esto implica que se debe incluir al menos un ejemplo de cada tipo de vegetación y de las especies de fauna y flora de interés en la región, y ello, utilizando no todo sino un conjunto mínimo de áreas. Bajo este escenario, la presencia de 86 especies en alguna categoría de riesgo y 55 especies endémicas a México de plantas y de vertebrados terrestres (algunas lo son a la SMS como Craugastor omiltemanus, Mesaspis gadovii, Cyanolyca mirabilis), justifican la necesidad de implementar áreas de conservación en esta región que no logran ser cubiertas por el Siste-

Table 4. Continuación. Table 4. Continued.

Familia	Especies	Riesgo	Endemismo
	Reptiles		
Anguidae	Mesaspis gadovii (Boulenger 1913)	Pr	X
Boidae	Boa constrictor (Linnaeus 1758)	Α	
Colubridae	Lampropeltis triangulum (Lacépede 1788)	Α	
Colubridae	Leptodeira annulata Duellman 1958	Pr	
Colubridae	Leptodeira maculata (Hallowell 1861)	Pr	X
Colubridae	Leptophis diplotropis (Günther 1872)	Α	X
Colubridae	Masticophis mentovarius (Duméril, Bibron & Duméril 1854)	Α	X
Colubridae	Rhadinaea hesperia (Bailey 1940)	Pr	X
Colubridae	Thamnophis chrysocephalus (Cope, 1885)	Α	X
Colubridae	Thamnophis godmani (Günther, 1894)	Α	X
Colubridae	Thamnophis scalaris (Günther 1894)	Α	X
Colubridae	Trimorphodon biscutatus (Duméril, Bibron & Duméril, 1854)	Pr	
Elapidae	Micrurus browni (Schmidt & Smith 1943)	Pr	
Helodermatidae	Heloderma horridum (Wiegmann 1829)	Α	
Iguanidae	Ctenosaura pectinata (Wiegmann 1834)	Α	X
Kinosternidae	Kinosternon integrum (De Conté 1854)	Pr	X
Polycrhotidae	Anolis nebulosus (Wiegmann 1834)		X
Polycrhotidae	Anolis omiltemanus (Davis 1954)	Pr	X
Polycrhotidae	Anolis liogaster (Boulenger 1905)	Pr	X
Phrynosomatidae	Sceloporus adleri (Smith y Savistzky 1974)	Pr	X
Phrynosomatidae	Sceloporus grammicus (Wiegmann 1828)	Pr	
Phrynosomatidae	Sceloporus horridus Wiegmann 1834		X
Phrynosomatidae	Sceloporus stejnegeri Smith 1942	Pr	X
Scincidae	Plestiodon ochoterenae (Taylor 1933)	Pr	X
Viperidae	Agkistrodon bilineatus (Gunther 1863)	Pr	
Viperidae	Crotalus durissus Linnaeus 1758	Pr	
Viperidae	Crotalus ravus (Campbell y Armstrong 1979)	Α	X
Viperidae	Ophryacus undulatus (Jan 1859)	Pr	X

ma Nacional de ANP's. Además, dentro de los tipos de vegetación comprendidos en las áreas de conservación se encuentra el bosque mesófilo, cuyas poblaciones de plantas y animales se caracterizan por ser pequeñas y genéticamente aisladas. Este tipo de vegetación fue el que más superficie abarcó en las áreas de conservación propuestas (con poco más del 20 % del total de las áreas de conservación), ya que además se encuentra en un grave estado de conservación a nivel nacional (Challenger 1998, 2003).

Debido a que el tamaño de la población de las especies es el mejor indicador de la probabilidad de extinción (Dunn 2001), las reservas o áreas de conservación deben ser suficientes en una región para preservar las poblaciones de especies importantes (i. e. endémicas, raras, claves, de importancia económica). Considerando lo anterior, muchas de las pobla-

ciones de varias especies registradas en las áreas de conservación en este estudio están altamente amenazadas por diversos factores, como el conjunto de actividades agrícolas y ganaderas que se caracteriza por ser de tipo extensivo y la actividad intensiva de la extracción del recurso forestal con la consecuente destrucción del hábitat. De manera puntual, en los ejidos estudiados algunas de las especies en peligro de extinción o altamente amenazadas son: Lithobates forreri, L. sierramadrensis, Masticophis mentovarius, Leptophis diplotrophis, Ara militaris, Eupherusa poliocerca, Cyanolyca mirabilis, Leopardus pardalis, L. wiedii y Panthera onca, por mencionar algunos.

Es importante mencionar que en el contexto de las comunidades rurales, el establecimiento de un área protegida muchas veces puede ser entendido

Tabla 4. Continuación. **Table 4.** Continued.

Familia	Especies	Riesgo	Endemismo
	Aves		
Accipitridae	Accipiter striatus Vieillot 1808	Pr	
Accipitridae	Accipiter cooperii (Bonaparte 1828)	Pr	
Accipitridae	Buteo swainsoni Bonaparte 1838	Pr	
Accipitridae	Buteo albicaudatus Vieillot 1816	Pr	
Accipitridae	Buteo albonotatus Kaup 1847	Pr	
Galliformes	Ortalis poliocephala (Wagler 1830)		X
Galliformes	Penelope purpurascens Wagler 1830	Α	
Galliformes	Dendrortyx macroura (Jardine & Selby 1828)	Α	X
Columbiformes	Geotrygon albifacies Sclater 1858	Α	
Psittacidae	Aratinga canicularis (Linnaeus 1758)	Pr	
Psittacidae	Ara militaris (Linnaeus 1766)	Р	
Psittacidae	Amazona finschi (Sclater 1864)	Р	X
Trochillidae	Chlorostilbon auriceps (Gould 1852)		X
Trochillidae	Amazilia viridifrons (Elliot 1871)	Α	X
Trochillidae	Eupherusa poliocerca Elliot 1871	Α	X
Trochillidae	Tilmatura dupontii (Lesson 1832)	Α	
Trogonidae	Trogon collaris Gould 1845	Pr	
Ramphastidae	Aulacorhynchus prasinus (Gould 1834)	Pr	
Picidae	Melanerpes chrysogenys (Vigors 1839)		X
Picidae	Piculus auricularis (Salvin & Godman 1889)		X
Picidae	Campephilus guatemalensis (Hartlaub 1844)	Pr	
Furnaridae	Automolus rubiginosus Sclater 1857	Α	
Dendrocolaptidae	Dendrocolaptes sanctithomae (Lafresnaye 1852)	Pr	
Dendrocolaptidae	Lepidocolaptes leucogaster (Swainson 1827)		X
Vireonidae .	Vireo brevipennis (Sclater 1858)	Α	X
Vireonidae	Vireo hypochryseus Sclater 1863		X
Corvidae	Cyanolyca mirabilis Nelson 1903	Р	Χ
Troglodytidae	Thryothorus sinaloa (Baird 1864)		Χ
Troglodytidae	Thryothorus felix Sclater 1859		X
Turdidae	Myadestes occidentalis Stegnejer 1882	Pr	
Turdidae	Catharus occidentalis Sclater 1859	Pr	X
Turdidae	Catharus frantzii Cabanis 1861	Α	
Mimidae	Melanotis caerulescens (Swainson 1827)		X
Parulidae	Oporornis tolmiei (Townsend 1839)	Α	
Parulidae	Ergaticus ruber (Swainson 1827)		X
Thraupidae	Piranga erythrocephala (Swainson 1827)		X
Emberizidae	Atlapetes pileatus Wagler 1831		X
Emberizidae	Melozone kieneri (Bonaparte 1850)		X
Emberizidae	Pipilo ocai (Lawrence 1865)		X
Cardinalidae	Passerina ciris (Linnaeus 1758)	Pr	

como un intento del gobierno por usurpar los recursos de las comunidades campesinas (Arizpe *et al.* 1993). Idealmente el sólo hecho de establecer áreas de conservación de cualquier carácter debería representar un compromiso de mutuo apoyo entre las diferentes instancias de gobierno y las comunidades involucradas, ya que las comunidades por si solas

no pueden cubrir por completo los gastos generados en la manutención de sus áreas de conservación y el gobierno no puede trabajar en dichas áreas sin el consentimiento y apoyo de las comunidades.

Mucho se ha debatido sobre si las ANP's en México tienen alcances limitados o no (e. g. Godau 1985; Paz 2008), si son realmente efectivas

Tabla 4. Continuación. Table 4. Continued.

Familia	Especies						
Mamíferos							
Didelphidae	Tlacuatzin canescens Allen1893		X				
Erenthizontidae	Coendou mexicanus Kerr 1792	Α					
Myrmecophagidae	Tamandua mexicana De Saussure 1860	Р	X				
Leporidae	Sylvilagus cunicularius Waterhouse,1848		X				
Soricidae	Cryptotis goldmani (Merriam 1895)	Pr	X				
Soricidae	Sorex veraepacis Alston1877	Α	Χ				
Phyllostomidae	Choeronycteris mexicana Tschudi1844	Α					
Phyllostomidae	Leptonycteris curasoae Miller 1900	Α					
Felidae	Puma yagouaroundi É. Geoffroy Saint-Hilaire 1803	Α					
Felidae	Leopardus pardalis Goldman 1925	Р					
Felidae	Leopardus wiedii Thomas 1903	Р					
Felidae	Panthera onca Gray 1858	Р					
Mustelidae	Lontra longicaudis Olfers1818	Α					
Mustelidae	Spilogale pygmaea Thomas 1898	Α	X				
Procyonidae	Nasua narica (Linnaeus 1766)	Α	Χ				
Procyonidae	Potos flavus Kerr 1792	Pr					
Sciuridae	Glaucomys volans Diersing 1980	Α					
Rodentia	Megadontomys thomasi (Merriam 1898)	Pr	Х				

(Sánchez-Cordero et al. 2009) o si están homogéneamente distribuidas en el país (Koleff & Moreno 2006). En cualquiera de los casos, las áreas de conservación comunitaria son a escala local, una alternativa viable para la conservación y la valoración de la biodiversidad y los servicios ambientales, que involucran a las comunidades humanas en su delimitación y operación.

AGRADECIMIENTOS

Los autores agradecen a las comunidades inmersas dentro de los ejidos estudiados, por la información y vasto conocimiento sobre su flora y fauna, su amistad y hospitalidad. De igual forma, agradecemos a Oscar Nova, Juan Romero, Blanca Carreto, Jorge Magaña, Daniel Mora, Enrique Vázquez y Ezequiel Guerrero por su apoyo en diferentes fases de cada uno de los proyectos, así como a dos árbitros que enriquecieron con sus comentarios este manuscrito. A los diversos estudiantes de las carreras de ecología y biología de la Universidad Autónoma de Guerrero por su apoyo en el trabajo de campo. El financiamiento fue otorgado por el programa de conservación y manejo forestal (PROCYMAF-CONAFOR) y el proyecto de conservación de la biodiversidad por comunidades indígenas (COINBIO).

LITERATURA CITADA

Almazán-Catalán JA, Sánchez-Hernández C, Romero-Almaraz ML (2005) Registros sobresalientes de mamíferos del estado de Guerrero, México. Acta Zoológica Mexicana (ns) 21: 155-157.

Almazán-Juárez A, González R, Urbán G, Tapia J, Villerías S, Beltrán E, Almazán MT (2004) Diagnóstico ambiental y propuestas de ordenamiento para la subcuenca del río San Juan del estado de Guerrero, México. Serie Técnico Científica No. 17. UAG-Fundación Produce de Guerrero-SIBEJ. Chilpancingo, Guerrero. 180 p.

Aranda M (2000) Huellas y otros rastros de los mamíferos grandes y medianos de México. CONABIO-Instituto de Ecología, A.C. México, D.F. 212 p.

- Arizpe L, Paz F, Velásquez M (1993) Cultura y cambio global: percepciones sociales sobre la deforestación en la Selva Lacandona. CRIM-UNAM-Porrúa. México, D.F. 230 p.
- Arriaga L, Espinoza JM, Aguilar C, Martínez E, Gómez L, Loa E, Larson J (2000). Regiones Terrestres Prioritarias de México. CONABIO. México, D.F. 609 p.
- Barret NE, Barret JP (1997) Reserve design and the new conservation theory. En: Pickett STA, Ostfeld RS, Shachak M, Cikens GE (eds) The ecological basis of conservation heterogeneity, ecosystems and biodiversity. Chapman & Hall. 1^a. Ed. New York. pp. 236-251.
- Bezaury-Creel J, Gutiérrez-Carbonell D (2009) Áreas naturales protegidas y desarrollo social en México. En: Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. CONABIO, México. D.F. pp. 385-431.
- Bocco G, Velázquez A, Torres A (2000) Ciencia, comunidades indígenas y manejo de recursos naturales. Un caso de investigación participativa en México. Interciencia 25(2): 64-70
- Bridgewater P (1992) Fortalecimiento de áreas protegidas. En: Estrategia global para la Biodiversidad. WRI-UICN-PNUMA. pp. 117-132.
- Carabias J, Provencio E, Toledo C (1993) Cultura tradicional y aprovechamiento integral de recursos naturales en tres regiones indígenas de México. En: Leff E, Carabias J (coords) Cultura y manejo sustentable de los recursos naturales. CIIH-UNAM-Porrúa. México, D.F. pp. 741-773.
- Carabias J, Arriaga V, Cervantes V (2007) Las políticas públicas de la restauración ambiental en México: limitantes, avances, rezagos y retos. Bol. Soc. Bot. México 80: 85-100.
- Ceballos G, Gómez de Silva H, Arizmendi MC (2002) Áreas prioritarias para la conservación de las aves de México. Biodiversitas 41: 1-7.
- Cervantes GV, Arriaga V, Carabias J (1996) La problemática socioambiental e institucional de la reforestación en la región de La Montaña, Guerrero, México. Bol. Soc. Bot. México 59: 67-80.
- Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México: pasado, presente y futuro. CONABIO-Instituto de Biología UNAM- Sierra Madre. México, D.F. 847 p.
- Challenger A (2003) Conceptos generales acerca de los ecosistemas templados de montaña de México y su estado de conservación. En: Sánchez O, Vega E, Peters E, Monrol-Vilchis O (eds) Conservación de ecosistemas templados de montaña en México. INE-SEMARNAT. D. F. pp. 17-44
- Dirzo R (1990) La biodiversidad como crisis ecológica actual ¿ Qué sabemos?. Ciencias 4: 48-55
- DOF (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Jueves 30 de diciembre de 2010 (Segunda Sección). 79 p.
- Dunn EH (2001) Using decline in bird population to identify needs for conservation action. Conservation Biology 16: 1632-1637
- Durán L (2006) Participación social y conservación. En: Barahona A, Almeida-Leñero L (coords) Educación para la conservación. UNAM. México, D.F. pp. 67-76.
- ESRI (2000). Arc View GIS version 3.2 Environmental Systems Research Inc. USA. http://www.esri.com
- Flores-Villela O, Gérez P (1994) Biodiversidad y conservación en México: vertebrados, vegetación y uso del suelo. CONABIO-UNAM, México, D.F. 493 p.
- Flores-Villela O, Mendoza-Quijano F, Gonzalez-Porter G (1995) Recopilación de claves para la determinación de anfibios y reptiles de México. Pub. Esp. Mus. Zool. Fac. de Ciencias UNAM. 10: 1-285

- Fuller T, Munguía M, Mayfield M, Sánchez-Cordero V, Sarkar S (2006) Incorporating connectivity into conservation planning: A multi-criteria case study from central Mexico. Biological Conservation 133: 131-142.
- Gama L, Chiappy CJ, Le Moing AM (2003) Etnopaisaje: una propuesta metodológica en ordenamientos comunitarios. Kuxulkab' 16: 17-22.
- Ghimire KB, Pimbert MP (1997) Social change and conservation: An overview of issues and concepts. En: Ghimire KB, Pimbert MP (eds) Social change and conservation. Earthscan, London. pp. 1-45.
- Godau SR (1985) La protección ambiental en México: sobre la conformación de una política pública. Estudios Sociológicos 3: 47-84.
- INEGI (1998) Ortofotos escala 1: 20,000. Instituto Nacional de Estadística, Geografía e Informática, INEGI. México.
- Koleff P, Moreno E (2006) Áreas protegidas de México y representación de la riqueza. En: Llorente-Bousquets J, Morrone JJ (eds) Regionalización biogeográfica en Iberoamérica y tópicos afines. CYTED-UNAM-CONABIO. México, D.F. pp. 351-373.
- Landa R, Meave J, Carabias J (1997) Environmental deterioration in rural Mexico: an examination of the concept. Ecological Application 7: 316-329.
- Lot A, Chiang F (1986) Manual de herbario. Consejo Nacional de la Flora de México. México, D.F. 142 p.
- Merino L (2006) Agua, bosques y participación soci La experiencia de la comunidad de San Pedro Chichila, Guerrero. Gaceta Ecológica 80: 33-49.
- Moore RT (1949) A new hummingbird of the genus *Lophornis* from southern Mexico. Proc. Biol. Soc. Wash. 62: 103-104.
- Navarro AG (1998) Distribución geográfica y ecológica de la avifauna del estado de Guerrero. Tesis de Doctorado. Facultad de Ciencias, UNAM. México, D.F. 182 p.
- Negrete G, Bocco G (2003) El ordenamiento ecológico comunitario: una alternativa de planeación participativa en el contexto de la política ambiental de México. Gaceta Ecológica 68: 9-22.
- Nelson EW (1904). Descriptions of seven new rabbits from Mexico. Proc. Biol. Soc. Wash. 17: 103-110
- Orozco RQ (2006) Cinco experiencias de ordenamiento territorial comunitario en Michoacán. En: Anta S, Arreola AV, González MA, Acosta J (comps) Ordenamiento Territorial Comunitario: un debate de la sociedad civil hacia la construcción de políticas públicas. INE-SEMARNAT. México, D.F. pp. 209-228.
- Ortega-Escalona F (2001) Los bosques, su valor e importancia. Ciencias 64: 4-9.
- Paz MF (2008) De áreas naturales protegidas y participación: convergencias y divergencias en la construcción del interés público. Revista Nueva Antropología 68: 51-74.
- Pérez-Ramos E, Saldaña-de la Riva L (2003) Nueva especie de salamandra del género *Pseudoeurycea* (Amphibia: Caudata: Plethodontidae) de la región Amuzga, al sureste de Guerrero, México. Acta Zoológica Mexicana (ns) 89: 55-68
- Pérez-Ramos E, Saldaña L, Uribe-Peña Z (2000) A checklist of the reptiles and amphibians of Guerrero, Mexico. An. Inst. Biol. UNAM, Serie Zoología 71: 21-40.
- Pressey RL, Humphries CJ, Margules CR, Vane-Wright RY, Williams PH (1993) Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution 8: 124-128.

- Pteiffer J, Uril Y (2003) The role of indigenous parataxonomists in botanical inventory: from Herbarium Amboinense to Herbarium Floresense. Telopea 10(1): 61-72.
- Ralph JC, Geupel GR, Pyle P, Martin TE, DeSante DF, Milá B (1996) Manual de métodos de campo para el monitoreo de aves terrestres. Gen. Tech. Rep. PSW-GTR-159, Albany, C. A. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 44 p.
- Romero-Almaraz ML, Sanchez-Hernandez C, Estrada C, Owen R (1999) Mamíferos pequeños. Manual de técnicas de captura, preparación, preservación y estudio. Facultad de Ciencias, Instituto de Biologia UNAM-CIB,UAEM. México, D.F. 153 p.
- Rzedowski J (1978) Vegetación de México. Ed. Limusa. México. 432 p.
- Sánchez-Cordero V, Figueroa F, Illoldi P, Linaje M (2009) Efectividad de las áreas naturales protegidas de México. En: Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. CONABIO, México, D.F. pp. 394-397.
- Solano-Gómez R, Salazar GA (2007) A new species of Stelis (Orchidaceae, Pleurothallidinae) from Guerrero, Mexico. Revista Mexicana de Biodiversidad 78: 253-256.
- Stattersfield JA, Crosby MJ, Long AJ, Webe C (1998) Endemic Bird Areas of the World: Priorities for biodiversity conservation. BirdLife International, Conservation Series No. 7. Cambridge. 848 p.
- Toledo VM (1997) Sustentable development at the village community level: A third world perspective. En: Smith F (ed) Environmental sustentability: practical global implications. St. Lucie Press. Boca Raton Florida. pp. 233-251.
- Toledo VM, Alarcón-Chaires P, Moguer P, Olivo M, Cabrera A, Leyequien E, Rodríguez-Aldabe A (2001) El atlas etnoecológico de México y Centroamérica: fundamentos, métodos y resultados. Etnoecológica 6: 7-41
- Wunder S, Wertz S, Moreno R (2007) Pago por servicios ambientales: una nueva forma de conservar la biodiversidad. Gaceta Ecológica 84-85: 39-52.