Efecto de la oclusión de un bronquio y la restricción alimenticia en pollos de engorda

Autores/as

  • Leodan Tadeo Rodríguez-Ortega Universidad Politécnica de Francisco I. Madero image/svg+xml
    • Arturo Pro-Martínez Colegio de Postgraduados image/svg+xml
      • Eliseo Sosa-Montes Universidad Autónoma Chapingo
        • Filogonio Jesús Hernández-Guzman Universidad Autónoma Chapingo
          • Sergio Iban Mendoza-Pedroza Colegio de Postgraduados image/svg+xml
            • Hector Leyva-Jimenez United Animal Health (United States) image/svg+xml

              DOI:

              https://doi.org/10.19136/era.a12n3.4078

              Palabras clave:

              Ascitis, actividad antioxidante, oxidación lipídica

              Resumen

              El objetivo del presente estudio fue evaluar el efecto de la oclusión de un bronquio (OB, a 21 días de edad) y la restricción de alimento; RA (12 horas día-1) sobre la actividad antioxidante y variables relacionados con la ascitis en pollos criados a 2,278 m de altitud. Los tratamientos fueron: conOB-conRA, conOB-sinRA, sinOB-conRA, sinOB-sinRA. El hematocrito (Hct %) se evaluó en dos periodos (periodo uno y dos: 10 y 16 días después de la oclusión). En el periodo 2: 10 pollos por tratamiento se sacrificaron de forma humanitaria, para evaluar la relación peso del ventrículo derecho entre el peso ventricular total (RV:TV). La actividad antioxidante (AO) se evaluó en el corazón, pulmón e hígado. Los pollos sinOB-conRA tuvieron el menor (P < 0.05) Hct% en los dos periodos evaluados (33.1 y 37%). La menor mortalidad por ascitis se observó en las aves sinOB-conRA y la mayor mortalidad en las aves conOB-sinRA (5% y 52%, respectivamente). Las aves sinOB-conRA presentaron la menor (P<0.05) relación RV:TV comparado con todos los tratamientos. Los pollos sinOB-conRA tuvieron la mayor (P<0.05) AO en el corazón (78±0.56%), pulmón (64±0.62%) e hígado (83±0.80%) con respecto a los otros tratamientos. En conclusión: la restricción alimenticia 12 horas día-1 reduce la mortalidad debida a ascitis. La oclusión de un bronquio primario es un método efectivo para desarrollar ascitis de manera experimental en pollos de engorda criados a 2 278 m de altitud. La alimentación ad libitum es un factor que impulsa el desarrollo de ascitis.

              Descargas

              Los datos de descarga aún no están disponibles.

              Referencias

              Abdulazeez ET (2023) Ascites in broiler: Updates. Journal of Applied Veterinary Sciences 8(2): 23-29. https://doi.org/10.21608/javs.2023.175426.1195

              Aftab U, Khan AA (2005) Strategies to alleviate the incidence of ascites in broilers: a review. Brazilian Journal of Poultry Science 7(4): 199-204. https://doi.org/10.1590/S1516-635X2005000400001

              Balog JM, Anthony NB, Cooper MA, Kidd BD, Huff GR, Huff WE, Rath NC (2000) Ascites syndrome and related pathologies in feed restricted broilers raised in a hypobaric chamber. Poultry Science 79(3): 318-323.

              Balog JM (2003) Ascites syndrome (Pulmonary Hypertension Syndrome) in broiler chickens: ¿Are we seeing the light at the end of the tunnel? Avian and Poultry Biology Reviews 14(3): 99 -126.

              Belik J, Stevens D, Pan J, Mclntyre BAS, Kantores C, Ivanovska J, Xu EZ, Ibrahim C, Panama BK, Backx PH, McNamara PJ, Jankov RP (2010) Pulmonary vascular and cardiac effects of peroxynitrite decomposition in newborn rats. Free Radical Biology and Medicine 49(8): 1306-1314.

              Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft and Technologie 28: 25-30.

              Bottje WG, Carstens GE (2008) Association of mitochondrial function and feed efficiency in poultry and livestock species. Journal Animal Science 87: E48-E63. https://doi.org/10.2527/jas.2008-1379

              Bouge J, Aust SD (1978) Microsomal lipid peroxidation. Methods in Enzymology 52: 302-310. https://doi.org/10.1016/s0076-6879(78)52032-6

              Cawthon D, Beers K, Bottje WG (2001) Electron transport chain defect and inefficient respiration may underlie pulmonary hypertension syndrome (ascites)-associated mitochondrial dysfunction in broilers. Poultry Science 80(4): 474-484. https://doi.org/10.1093/ps/80.4.474

              Chirino IY, Orozco-Ibarra M, Pedraza-Chaverri J (2006) Evidencias de la participación del peroxinitrito en diversas enfermedades. Revista de Investigación Clínica 58(4): 350-358.

              Cristancho GW (2012) Fisiología respiratoria. 3a. Edición. Editorial Manual Moderno. México. 242p.

              Gutiérrez-Torres JA, Pinto-Ruiz R, Crosby-Galván MM, Pérez-Olvera MA, Hernández-Sánchez D (2023) Marco regulatorio de la carne de bovino en México: normativa para un estándar de certificación de calidad e inocuidad. Nacameh 17(2): 85-100.

              Hassanzadeh M, Gilanpour H, Charkhkar S, Buyse J, Decuypere E (2005) Anatomical parameters of cardiopulmonary system in three different lines of chickens: further evidence for involvement in ascites syndrome. Avian Pathology 34(3): 188-193. http://dx.doi.org/10.1080/03079450500096372

              Kalmar ID, Vanrompay M, Janssens GPJ (2013) Broiler ascites syndrome: Collateral damage from efficient feed to meat conversion. Veterinary Journal197(2): 169-174. https://doi.org/10.1016/j.tvjl.2013.03.011

              Lemeshko VV (2018) El papel de la membrana mitocondrial externa en el control del metabolismo energético celular. Revista de la academia Colombiana de Ciencias Exactas, Físicas y Naturales 42(162): 6-21. https://doi.org/10.18257/raccefyn.549

              Luger D, Shinder D, Wolfenson D, Yahav S (2003) Erythropoiesis regulation during the development of ascites syndrome in broilers chickens. Journal Animal Science 81(3): 784-790. https://doi.org/10.2527/2003.813784x

              Noori S (2012) An overview of oxidative stress and antioxidant defensive system. Open Access Scientific Reports 1(8): 1-9. http://dx.doi.org/10.4172/scientificreports.413

              Oka M, Hirouchi M, Itoh Y, Ukai Y (2000) Involvement of peroxynitrite and hydroxyradical generated from nitric oxide in hypoxia/reoxygenation injury in rat cerebrocortical. Neuropharmacology 39: 1319-1330. https://doi.org/10.1016/s0028-3908(99)00197-5

              Oliver JMR, González GAE (2009) Síndrome hipoxémico crónico. Revista Española de Cardiología 9: 13E-22E. https://doi.org/10.1016/S1131-3587(09)73293-5

              Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiological Reviews January 87(1): 315-424. https://doi.org/10.1152/physrev.00029.2006

              Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N, Braun-Dullaew RC, Kummer W (2003) Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. American Journal Physiology-Lung Cellular and Molecular Physiology 284: L710–L719. https://doi.org/10.1152/ajplung.00149.2002

              Pan J-Q, Li J-C, Tan X, Sun W-D, Wang J-Y, Wang X-L (2007) The injury effect of oxygen free radicals in vitro on cultured pulmonary artery endothelial cells from broilers. Research in Veterinary Science 82: 382-387. https://doi.org/10.1016/j.rvsc.2006.08.001

              Pan, JQ, Tan X, Li JC, Sun WD, Wang XL (2005) Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. British Poultry Science 46(3): 374-381. https://doi.org/10.1080/00071660500098152

              Poyton RO, Ball KA, Castellano RP (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends in Endocrinology and Metabolism 20(7): 332-340. https://doi.org/10.1016/j.tem.2009.04.001

              Rodríguez-Ortega LT, Juárez-Juárez G, Pro-Martínez A, Sosa-Montes E, Bautista-Ortega J, González-Cerón F, Vargas-Galicia AJ, Chan-Díaz D, Moreno-Medina D, Gallegos-Sánchez J, Rodríguez-Ortega A (2017) Lipid peroxidation in the plasma, lungs, heart and liver of broilers fed a grape seed extract and raised at 2278 m of Altitude. Brazilian Journal of Poultry Science 19(3): 465-470. http://dx.doi.org/10.1590/1806-9061-2016-0408

              SAS (2006) Language guide for personal computers. Release. 9th ed. Cary: SAS Institute. 1028p.

              Schumacker TP (2011) Lung cell hypoxia. Role of mitocondrial reactive oxigen species signaling in triggering responses. Proceedings of the American Thoracic Society: 8(6): 477-484.

              SENASICA (2015) NOM-033-ZOO-1995. Sacrificio humanitario de los animales domésticos y silvestres. Norma Oficial Mexicana. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Diario Oficial de la Federación. México. Fecha de publicación: 16 de junio de 1996, fecha de la última modificación: 26 de agosto de 2015.

              SENASICA (2001) NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Norma Oficial Mexicana. Ciudad de México. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Diario Oficial de la Federación. México. Fecha de publicación: 06 de diciembre de 1999, fecha de la última modificación: 22 de agosto de 2001.

              Tirzitis G, Bartoz G (2010) Determination of antiradical and antioxidant activity: basic principles and new insights. Acta biochimica polonica 57(1915): 1-4.

              Turrens JF (2003) Mitochondrial formation of reactive oxygen species. Journal of Physiology 552: 335–344.

              Vázquez GJC, Pérez PR (2000) Valores gasométricos estimados para las principales poblaciones y sitios a mayor altitud en México. Revista del Instituto Nacional de Enfermedades Respiratorias México 13(1): 6-13.

              Villafuerte FC, Simonson T, Bermudes D, León-Velarde F (2022) Hight-altitude erythrocytosis of adaptive and maladaptive responses. Physiology 37: 175-186. https://doi.org/10.1152/physiol.00029.2021

              Wang Y, Guo Y, Ning D, Peng Y, Cai H, Tan J, Yang Y, Liu D (2012) Changes of hepatic biochemical parameters and proteomics in broilers with cold-induced ascites. Journal of Animal Science and Biotechnology 3(1/41): 1-9. https://doi.org/10.1186/2049-1891-3-41

              Wideman RF, Kirby YK, Tackett CD, Marson NE, Tressler CJ, McNew RW (1996) Independent and simultaneous unilateral occlusion of the pulmonary artery and extra-pulmonary primary bronchus in broilers. Poultry Science 75(11): 1417-1427. https://doi.org/10.3382/ps.0751417

              Wideman RF, Kirby YK, Owen RL, French H (1997) Chronic unilateral occlusion of an extrapulmonary primary bronchus induces pulmonary hypertension syndrome (ascites) in male and female broilers. Poultry Science 76: 400-404.

              Wideman RF (2001) Pathophysiology of heart/lung disorders: Pulmonary hypertension syndrome in broiler chickens. World’s Poultry Science Journal 57: 289-301. https://doi.org/10.1079/WPS20010021

              Descargas

              Publicado

              2025-10-29

              Número

              Sección

              ARTÍCULOS CIENTÍFICOS

              Cómo citar

              Rodríguez-Ortega, L. T., Pro-Martínez, A., Sosa-Montes, E., Hernández-Guzman, F. J., Mendoza-Pedroza, S. I., & Leyva-Jimenez, H. (2025). Efecto de la oclusión de un bronquio y la restricción alimenticia en pollos de engorda. Ecosistemas Y Recursos Agropecuarios, 12(3). https://doi.org/10.19136/era.a12n3.4078

              Artículos más leídos del mismo autor/a

              1 2 3 > >>