Frecuencias alélicas de polimorfismos en genes de la ruta AMPK del metabolismo lipídico en ganado Wagyu

Autores/as

  • Luis Enrique Sánchez-Ramos Instituto Politécnico Nacional image/svg+xml
    • Gaspar Manuel Parra-Bracamonte Instituto Politécnico Nacional image/svg+xml
      • Ana María Sifuentes-Rincón Instituto Politécnico Nacional image/svg+xml
        • Juan Carlos Martínez-González Universidad Autónoma de Tamaulipas image/svg+xml
          • Juan G. Magaña-Monforte Universidad Autónoma de Yucatán
            • José Fernando Vázquez-Armijo Universidad Autónoma del Estado de México image/svg+xml
              • Xochitl Fabiola De la Rosa-Reyna Instituto Politécnico Nacional image/svg+xml
                • Victor Ricardo Moreno-Medina Instituto Politécnico Nacional image/svg+xml

                  DOI:

                  https://doi.org/10.19136/era.a12n3.4237

                  Palabras clave:

                  Acidos grasos, calidad, carne, marcadores moleculares, SNP

                  Resumen

                  En ganado bovino la vía AMPK actúa como un sensor energético que se activa por aumentos en la proporción celular AMP/ATP e influye sobre múltiples procesos metabólicos modificando el perfil de ácidos grasos (FA) en distintos tejidos. El objetivo del trabajo fue estimar y comparar las frecuencias alélicas de 27 SNP en 22 genes de la ruta AMPK, en poblaciones de ganado Wagyu y sus cruces. Se colectaron 111 muestras de Longissimus dorsi de Wagyu y Wagyu-Cross, las cuales se agruparon por grupo genético, para tipificar 27 SNP ubicados dentro de los 22 genes que participan en la ruta AMPK. Se examinó el desequilibrio de ligamiento, el equilibrio de Hardy-Weinberg (H-W), y la diferencia génica entre los grupos genéticos. Se encontraron 20 SNP polimórficos. HNF4 ss61961144 y SCD g.10213 no se encontraron en equilibrio de H-W. Los SNP dentro de SCD1 se encontraron en desequilibrio de ligamiento al igual que los SNP dentro de PRKAR2A; DGAT1 K232A, IGF2R ss77831885, MYOZ1 ss77831945, PRKAR2A ss62837580, PRKAR2A ss628376667, SCD1 g.10329, SCD5 134718 y SRPRA 4150, los cuales presentaron diferencia génica entre grupos. En conclusión, SCD1 g.10329 es el marcador con mayor solidez, que presenta diferencia génica entre grupos, por lo que puede utilizarse en selección asistida por marcadores (MAS) para mejorar el perfil de FA en carne, adicionalmente se propone hacer análisis de asociación a FA de SLC2A4 ss62538460, PLTP ss77832104, PPARGC1A c.1892+19 y MYOZ1 ss77831945, debido a que son SNP con cualidades para implementarse en el mejoramiento genético asistido.

                  Descargas

                  Los datos de descarga aún no están disponibles.

                  Biografía del autor/a

                  • Gaspar Manuel Parra-Bracamonte, Instituto Politécnico Nacional

                    Biotecnología y agropecuarias

                  Referencias

                  Azis R, Jakaria, Anggraeni A, Gunawan A (2020) Acetyl-CoA carboxylase alpha gene polymorphism and its association with milk fatty acid of Holstein Friesian using real-time PCR method. Tropical Animal Science Journal 43: 306-313. https://doi.org/10.5398/tasj.2020.43.4.306

                  Bartoň L, Bureš D, Kott T, Řehák D (2016) Associations of polymorphisms in bovine DGAT1, FABP4, FASN, and PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls. Meat Science 114: 18-23. https://doi.org/10.1016/j.meatsci.2015.12.004

                  Bhuiyan MSA, Yu SL, Jeon JT, Yoon D, Cho YM, Park EW, Kim KS, Lee JH (2009) DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences 22: 765-773. https://doi.org/10.5713/ajas.2009.80573

                  Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K (2015) Carcinogenicity of consumption of red and processed meat. The Lancet Oncology 16: 1599-1600. https://doi.org/10.1016/S1470-2045(15)00444-1

                  Bovenhuis H, Visker MHPW, Poulsen NA, Sehested J, Van Valenberg HJF, Van Arendonk JAM, Larsen LB, Buitenhuis AJ (2016) Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of Dairy Science 99: 3113-3123. https://doi.org/10.3168/jds.2015-10462

                  Branda Sica A, Ravagnolo O, Brito G, Baldi F, LaManna A, Banchero G, Navajas EA, Rincón G, Medrano JF (2014) Evaluación de panel SNP en genes candidatos de vías metabólicas para carne en hereford. Archivos de Zootecnia 63: 73-84. https://doi.org/10.4321/S0004-05922014000100008

                  Calder PC (2015) Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition 39: 18S-32S. https://doi.org/10.1177/0148607115595980

                  Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism 25: 138-145. https://doi.org/10.1016/j.tem.2013.12.001

                  Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM, Snyder M (2012) A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Research 22: 1668-1679. https://doi.org/10.1101/gr.127761.111

                  Chiazza F, Collino M (2016) Peroxisome proliferator-activated receptors (PPARs) in glucose control, molecular nutrition and diabetes. Academic Press. pp. 105-114. https://doi.org/10.1016/B978-0-12-801585-8.00009-9

                  Dunner S, Sevane N, Garcia D, Levéziel H, Williams JL, Mangin B, Valentini A (2013) Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Animal Genetics 44: 493-501. https://doi.org/10.1111/age.12044

                  Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86: 839-848. https://doi.org/10.1016/j.biochi.2004.09.018

                  Ferst JG, Rovani MT, Dau AMP, Gasperin BG, Antoniazzi AQ, Bordignon V, Oliveira DE, Gonçalves PBD, Ferreira R (2020) Activation of PPARG inhibits dominant follicle development in cattle. Theriogenology 142: 276-283. https://doi.org/10.1016/j.theriogenology.2019.10.032

                  Frank D, Ball A, Hughes J, Krishnamurthy R, Piyasiri U, Stark J (2016) Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. Journal of Agricultural and Food Chemistry 64: 4299-4311. https://doi.org/10.1021/acs.jafc.6b00160

                  Gamarra D, Aldai N, Arakawa A, De-Pancorbo MM, Taniguchi M (2021) Effect of a genetic polymorphism in SREBP1 on fatty acid composition and related gene expression in subcutaneous fat tissue of beef cattle breeds. Animal Science Journal 92: e13521. https://doi.org/10.1111/asj.13521

                  Garcia D, Shaw RJ (2017) AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Molecular Cell 66: 789-800. https://doi.org/10.1016/j.molcel.2017.05.032

                  Gotoh T, Nishimura T, Kuchida K, Mannen H (2018) The Japanese wagyu beef industry: current situation and future prospects - A review. Asian-Australasian Journal of Animal Sciences 31: 933-950. https://doi.org/10.5713/ajas.18.0333

                  Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P (2002) Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222-231. https://doi.org/10.1101/gr.224202

                  Grzes M, Sadkowski S, Rzewuska K, Szydlowski M, Switonski M (2016) Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level. Molecular Biology Reports 43: 381-389. https://doi.org/10.1007/s11033-016-3969-z

                  Gui LS, Jia JL (2018) Effect of single nucleotide polymorphisms in the UCP3 and FOXO1 genes on carcass quality traits in Qinchuan cattle. Journal of Animal and Feed Sciences 27: 301-306. https://doi.org/10.22358/jafs/97366/2018

                  Gui LS, Raza SHA, Sun YG, Khan R, Ullah I, Han YC (2019) Detection of polymorphisms in the promoter of bovine SIRT1 gene and their effects on intramuscular fat content in Chinese indigenous cattle. Gene 700: 47-51. https://doi.org/10.1016/j.gene.2019.03.022

                  Hadar A, Gozes I, Gurwitz D (2017) RGS2 and SIRT1 link renin angiotensin aldosterone system to alzheimer’s disease. In: Gozes I (ed) Neuroprotection in Alzheimer’s disease. Academic Press. pp. 239-251. https://doi.org/10.1016/B978-0-12-803690-7.00012-0

                  Han C, Vinsky M, Aldai N, Dugan MER, McAllister TA, Li C (2013) Association analyses of DNA polymorphisms in bovine SREBP-1, LXRα, FADS1 genes with fatty acid composition in Canadian commercial crossbred beef steers. Meat Science 93: 429-436. https://doi.org/10.1016/j.meatsci.2012.10.006

                  Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19: 128. https://doi.org/10.1186/s43141-021-00231-1

                  He W, Gao M, Yang R, Zhao Z, Mi J, Sun H, Xiao H, Fang X (2022) The effect of CPT1B gene on lipid metabolism and its polymorphism analysis in chinese simmental cattle. Animal Biotechnology 33: 1428-1440. https://doi.org/10.1080/10495398.2021.1904966

                  Herms A, Bosch M, Reddy BJN, Schieber NL, Fajardo A, Rupérez C (2015) AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications 6: 7176. https://doi.org/10.1038/ncomms8176

                  Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research 51(D1): D587-D592. https://doi.org/10.1093/nar/gkac963

                  Kęsek-Woźniak MM, Wojtas E and Zielak-Steciwko AE (2020) Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals 10: 997. https://doi.org/10.3390/ani10060997

                  Khan MI, Jo C, Tariq MR (2015) Meat flavor precursors and factors influencing flavor precursors - A systematic review. Meat Science 110: 278-284. 110. https://doi.org/10.1016/j.meatsci.2015.08.002

                  Kim BK, Yoo HI, Choi K, Lee AR, Yoon SK (2016) Regulation of SRPR expression by miR-330-5p controls proliferation of mouse epidermal keratinocyte. PLoS ONE 11: e0164896. https://doi.org/10.1371/journal.pone.0164896

                  Kong HS, Oh JD, Lee JH, Yoon DH, Choi YH, Cho BW, Lee HK, Jeon GH (2007) Association of sequence variations in DGAT1 gene with economic traits in Hanwoo (Korea Cattle). Asian-Australasian Journal of Animal Sciences 20: 817-820. https://doi.org/10.5713/ajas.2007.817

                  Koren D, Palladino A (2016) Hypoglycemia, Genetic diagnosis of endocrine disorders. 2nd Edition, Academic Press 31-75. https://doi.org/10.1016/B978-0-12-800892-8.00003-8

                  Lee JY, Ha JJ, Park YS, Yi JK, Lee S, Mun S, Han K, Kim JJ, Kim HJ, Oh DY (2015) Relationship between single nucleotide polymorphisms in the peroxisome proliferator-activated receptor gamma gene and fatty acid composition in Korean native cattle. Asian-Australasian Journal of Animal Sciences 29: 184-194. https://doi.org/10.5713/ajas.15.0502

                  Lee SH, Lee JH, Im SS (2020) The cellular function of SCAP in metabolic signaling. Experimental and Molecular Medicine 52: 724-729. https://doi.org/10.1038/s12276-020-0430-0

                  Li C, Aldai N, Vinsky M, Dugan MER, McAllister TA (2012) Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Animal Genetics 43: 93-97. https://doi.org/10.1111/j.1365-2052.2011.02217.x

                  Li X, Ekerljung M, Lundström K, Lundén A (2013) Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Science 94: 153-158. https://doi.org/10.1016/j.meatsci.2013.01.010.

                  Medrano JF, Rincon G (2008) Snps associated with fatty acid composition of bovine meat and milk. Patent Application Publication US 2011/0045469 A1.

                  Mota JDO, Guillou S, Pierre F, Membré JM (2021) Public health risk-benefit assessment of red meat in France: Current consumption and alternative scenarios. Food and Chemical Toxicology 149: 111994. https://doi.org/10.1016/j.fct.2021.111994

                  Motoyama M, Sasaki K, Watanabe A (2016) Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Science 120: 10-18. https://doi.org/10.1016/j.meatsci.2016.04.026

                  Narukami T, Sasazaki S, Oyama K, Nogi T, Taniguchi M, Mannen H (2011) Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Animal Science Journal 82: 406-411. https://doi.org/10.1111/j.1740-0929.2010.00855.x

                  Näslund J, Fikse WF, Pielberg GR, Lundén A (2008) Frequency and effect of the bovine Acyl-CoA:Diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. Journal of Dairy Science 91: 2127-2134. https://doi.org/10.3168/jds.2007-0330

                  Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biological Psychiatry 83: 761-769. https://doi.org/10.1016/j.biopsych.2017.12.014

                  Oh DY, La B, Lee YS, Byun Y, Lee J, Yeo G, Yeo J (2013) Identification of novel single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) gene associated with fatty acid composition in Korean cattle. Molecular Biology Reports 40: 3155-3163. https://doi.org/10.1007/s11033-012-2389-y

                  Oh DY, Lee YS, Yeo JS (2011) Identification of the SNP (single nucleotide polymorphism) of the stearoyl-CoA desaturase (SCD) associated with unsaturated fatty acid in Hanwoo (Korean cattle). Asian-Australasian Journal of Animal Sciences 24: 757-765. https://doi.org/10.5713/ajas.2011.10410

                  Ohsaki H, Tanaka A, Hoashi S, Sasazaki S, Oyama K, Taniguchi M, Mukai F, Mannen H (2009) Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese black cattle herds. Animal Science Journal 80: 225-232. https://doi.org/10.1111/j.1740-0929.2009.00638.x

                  O’Quinn TG, Woerner DR, Engle TE, Chapman PL, Legako JF, Brooks JC, Belk KE, Tatum JD (2016) Identifying consumer preferences for specific beef flavor characteristics in relation to cattle production and postmortem processing parameters. Meat Science 112: 90-102. https://doi.org/10.1016/j.meatsci.2015.11.001

                  Pan G, Cavalli M, Wadelius C (2021) Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1864: 194724. https://doi.org/10.1016/j.bbagrm.2021.194724

                  Pegolo S, Cecchinato A, Mele M, Conte G, Schiavon S, Bittante G (2016) Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. Journal of Dairy Science 99: 4558-4573. https://doi.org/10.3168/jds.2015-10420.

                  Poletto AC, Furuya DT, David-Silva A, Ebersbach-Silva P, Corrêa-Giannella ML, Passarelli M, Passarelli M, Machado UF (2015) Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Molecular and Cellular Endocrinology 401: 65-72. https://doi.org/10.1016/j.mce.2014.12.001

                  Qin W, Liang CN, Guo X, Chu M, Pei J, Bao PJ, Wu XY, Li TK, Yan P (2015) PPARα signal pathway gene expression is associated with fatty acid content in yak and cattle longissimus dorsi muscle. Genetics and Molecular Research 14: 14469-14478. https://doi.org/10.4238/2015.November.18.9

                  Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. Journal of Dairy Research 79: 66-75. https://doi.org/10.1017/S002202991100080X

                  Rousset (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

                  Samuel B, Dadi H, Dinka H (2023) Effect of the DGAT1 K232A mutation and breed on milk traits in cattle populations of Ethiopia. Frontiers in Animal Science 4: 1096706. https://doi.org/10.3389/fanim.2023.109670

                  Sánchez-Ramos LE, Sifuentes-Rincón AM, Magaña-Monforte JG, Moreno-Medina VR, Parra-Bracamonte GM (2023) Polimorfismos en genes candidatos a la composición de ácidos grasos y su efecto en carne Wagyu-Cross. Revista MVZ Cordoba 28: e3090. https://doi.org/10.21897/rmvz.3090

                  Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Sherry ST (2023). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 51(D1): D29-D38. https://doi.org/10.1093/nar/gkac1032

                  Schennink A, Bovenhuis H, Léon-Kloosterziel KM, Van Arendonk JAM, Visker MHPW (2009) Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics 40: 909-916. doi: 10.1111/j.1365-2052.2009.01940.x

                  Sevane N, Armstrong E, Cortés O, Wiener P, Wong RP, Dunner S (2013) Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Science 94: 328-335. doi: 10.1016/j.meatsci.2013.02.014

                  Sevane N, Crespo I, Cañón J, Dunner S (2011) A Primer-Extension Assay for simultaneous use in cattle Genotype Assisted Selection, parentage and traceability analysis. Livestock Science 137: 141-150. doi: 10.1016/j.livsci.2010.10.011

                  Sevane N, Levéziel H, Nute GR, Sañudo C, Valentini A, Williams J, Dunner S (2014) Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds. Journal of Animal Science and Biotechnology 5: 20. https://doi.org/10.1186/2049-1891-5-20

                  Szklarczyk D, Kirsch R, Koutrouli M, Nastou KC, Mehryary F, Hachilif R, Jensen LJ (2023) The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51(D1): D638–D646. https://doi.org/10.1093/nar/gkac1000

                  Smith SB, Gill CA, Lunt DK, Brooks MA (2009) Regulation of fat and fatty acid composition in beef cattle. Asian-Australasian Journal of Animal Sciences 22: 1225-1233. https://doi.org/10.5713/ajas.2009.r.10

                  Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S (2004) Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 15: 142-148. https://doi.org/10.1007/s00335-003-2286-8

                  Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics 34: 354-357 https://doi.org/10.1046/j.1365-2052.2003.01011.x

                  The UniProt Consortium (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research 51(D1): D523-D531. Oxford University Press. https://doi.org/10.1093/nar/gkw1099

                  Tucker S, Philipson L, Naylor R (2019) The role of monogenic diabetes in pediatric type II diabetes, Pediatric Type II Diabetes. Elsevier. pp. 25-35. https://doi.org/10.1016/B978-0-323-55138-0.00005-X

                  Tyagi S, Gupta P, Saini A, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology and Research 2: 246-240. https://doi.org/10.4103/2231-4040.90879

                  Urtnowski P, Oprzadek J, Pawlik A, Dymnicki E (2011) The DGAT-1 Gene Polymorphism is informative QTL marker for meat quality in beef cattle. Macedonian Journal of Animal Science 1: 3-8. https://doi.org/10.54865/mjas111003u

                  Vázquez-Mosquera JM, Fernandez-Novo A, De Mercado E, Vázquez-Gómez M, Gardon JC, Pesántez-Pacheco JL, Astiz S (2023) Beef nutritional characteristics, fat profile and blood metabolic markers from purebred Wagyu, crossbred Wagyu and crossbred European steers raised on a fattening farm in Spain. Animals 13: 864. https://doi.org/10.3390/ani13050864

                  Vela-Vásquez DA, Sifuentes-Rincón AM, Delgado-Enciso I, Delgado-Enciso OG, Ordaz-Pichardo C, Arellano-Vera W, Treviño‐Alvarado V (2021) Improvement of serum lipid parameters in consumers of Mexican Wagyu-Cross beef: A randomized controlled trial. Journal of Food Science 86: 2713-2716. https://doi.org/10.1111/1750-3841.15739

                  Wang C, Wang S, He X, Wu L, Li Y, Guo J (2020) Combination of spectra and texture data of hyperspectral imaging for prediction and visualization of palmitic acid and oleic acid contents in lamb meat. Meat Science 169: 108194. https://doi.org/10.1016/j.meatsci.2020.108194

                  Warfel JD, Bermudez EM, Mendoza TM, Ghosh S, Zhang J, Elks CM (2016) Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice. Scientific Reports 6: 37941. https://doi.org/doi:10.1038/srep37941

                  Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M (2005) The bovine PPARGC1A gene: Molecular characterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics 21: 1-13. https://doi.org/10.1152/physiolgenomics.00103.2004

                  Williams JL, Dunner S, Valentini A, Mazza R, Amarger V, Checa ML (2009) Discovery, characterization and validation of single nucleotide polymorphisms within 206 bovine genes that may be considered as candidate genes for beef production and quality. Animal Genetics 40: 486-491. https://doi.org/10.1111/j.1365-2052.2009.01874.x

                  Winther AML, Kristensen KK, Kumari A, Ploug M (2021) Expression and one-step purification of active LPL contemplated by biophysical considerations. Journal of Lipid Research 62: 100149. https://doi.org/10.1016/J.JLR.2021.100149

                  Wolk A (2017) Potential health hazards of eating red meat. Journal of Internal Medicine 281: 106-122. https://doi.org/10.1111/joim.12543

                  Wood JD, Enser M (2017) Manipulating the fatty acid composition of meat to improve nutritional value and meat quality. New aspects of meat quality: From genes to ethics. Woodhead Publishing. pp. 501-535. https://doi.org/10.1016/B978-0-08-100593-4.00023-0

                  Wu XX, Yang ZP, Shi XK, Li JY, Ji DJ, Mao YJ, Chang LL, Gao HJ (2012) Association of SCD1 and DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle and their distribution in eight Chinese cattle breeds. Molecular Biology Reports 39: 1065-1071. https://doi.org/10.1007/s11033-011-0832-0

                  Xu L, Zhang LP, Yuan ZR, Guo LP, Zhu M, Gao X Gao HJ, Li JY, Xu SZ (2013) Polymorphism of SREBP1 is associated with beef fatty acid composition in Simmental bulls. Genetics and Molecular Research 12: 5802-5809. https://doi.org/10.4238/2013.November.22.7

                  Yu PY, Guttridge DC (2018) Dysregulated myogenesis in rhabdomyosarcoma. Current Topics in Developmental Biology. Academic Press. 126: 285-297 https://doi.org/10.1016/BS.CTDB.2017.10.007

                  Zhang S, Knight TJ, Reecy JM, Wheeler TL, Shackelford SD, Cundiff LV, Beitz DC (2010) Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-α gene with beef fatty acid composition. Animal Genetics 41: 417-420. https://doi.org/10.1111/j.1365-2052.2009.02006.x

                  Descargas

                  Publicado

                  2025-11-06

                  Número

                  Sección

                  ARTÍCULOS CIENTÍFICOS

                  Cómo citar

                  Sánchez-Ramos, L. E., Parra-Bracamonte, G. M., Sifuentes-Rincón, A. M., Martínez-González, J. C., Magaña-Monforte, J. G., Vázquez-Armijo, J. F., De la Rosa-Reyna, X. F., & Moreno-Medina, V. R. (2025). Frecuencias alélicas de polimorfismos en genes de la ruta AMPK del metabolismo lipídico en ganado Wagyu. Ecosistemas Y Recursos Agropecuarios, 12(3). https://doi.org/10.19136/era.a12n3.4237

                  Artículos más leídos del mismo autor/a