Producción de uchuva (Physalis peruviana L.) usando rizobacterias en condiciones de baja fertilización química
DOI:
https://doi.org/10.19136/era.a12n3.4558Palabras clave:
cultivo sustentable, microorganismos, biofertilizantes, agroquímicosResumen
La uchuva (Physalis peruviana L.) es un cultivo alternativo por su capacidad de adaptación y frutos altamente nutritivos. Sin embargo, en México ha sido poco estudiada su producción en suelo. Debido a los actuales desafíos ecológicos, es necesario utilizar métodos sustentables, como las rizobacterias. El objetivo de la investigación fue evaluar el efecto de la aplicación de un consorcio de rizobacterias en la producción de dos ecotipos de uchuva en condiciones de baja fertilización química (FQ). Se establecieron los ecotipos Sacha y Chiclayo, los cuales se trasplantaron en invernadero con ventilación natural en suelo acolchado y riego por goteo. La fertilización aplicada fue FQ al 25 y 50% de concentración a base de solución Steiner, la cual se combinó con un consorcio de rizobacterias (BF-UA), con un biofertilizante comercial (Bio-Organik Pseudomonas®) de Pseudomonas fluorescens (BC), ambos en concentración de 1x108 UFC mL-1, y con dos tratamientos controles sin rizobacterias. El BF-UA con el 50% de FQ aumentó el peso de los frutos (21.6%) de Sacha, así como el contenido de ácido cítrico (16.1%) en Chiclayo, en relación con el control de Chiclayo sin BF-UA. El BF-UA con 25% de FQ presentó un aumento en el contenido de vitamina C (11.5%) en comparación al control con 25% de FQ de ambos ecotipos. La aplicación del consorcio de rizobacterias y la reducción al 50% de FQ, son una opción viable para la producción sustentable de uchuva.
Descargas
Referencias
Agronet (2022) Red de Información y Comunicación del Sector Agropecuario Colombiano. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Ministerio de Agricultura y Desarrollo Rural de Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Fecha de consulta: 10 de diciembre de 2024.
Aguilar-Carpio C, Juárez-López P, Campos-Aguilar IH, Alia-Tejacal I, Sandoval-Villa M, López-Martínez V (2018) Analysis of growth and yield of cape gooseberry (Physalis peruviana L.) grown hydroponically under greenhouse conditions. Revista Chapingo Serie Horticultura 24(3): 191-202. https://doi.org/10.5154/r.rchsh.2017.07.024.
Alcarraz-Curi M, Heredia-Jiménez V, Julian-Ibarra JP (2019) Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizosfera de Coffea spp. en Pichanaqui, Perú. Biotecnología Vegetal 19(4): 285-295.
Álvarez-Herrera J, Fischer G, Restrepo LP, Quicazán M (2014) Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). En: Fischer G, Hernández MS, Herrera AO, Díaz RO, Balaguera-López HE (eds) II International Conference on Postharvest and Quality Management of Horticultural Products of Interest for Tropical Regions. Acta Horticulturae 1016. pp. 77-81. https://doi.org/10.17660/ActaHortic.2014.1016.8.
Álvarez-Herrera JG, Fischer G, Vélez-Sánchez JE (2015) Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Revista Colombiana de Ciencias Hortícolas 9(2): 222-233. https://doi.org/10.17584/rcch.2015v9i2.4177.
Álvarez-Herrera J, Fischer G, Vélez JE (2021) Análisis de la producción de uchuva (Physalis peruviana L.) durante el ciclo de cosechas en invernadero con diferentes láminas de riego. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 45(174): 109-121. https://doi.org/10.18257/raccefyn.1239.
ANALDEX (2025) Informe exportaciones de uchuva 2024. Asociación Nacional de Comercio Exterior. Bogotá, D.C. Colombia. https://www.analdex.org/2025/02/17/informe-exportaciones-de-uchuva-2024. Fecha de consulta: 17 de junio de 2025.
AOAC (2005) Official methods of analysis of AOAC International. Horwitz W, Latimer GW (eds), 18th edition. Association of Official Analytical Collaboration (AOAC) International. Gaithersburg, Maryland, USA. 2350 pp.
Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4): 493-496. https://pubmed.ncbi.nlm.nih.gov/5325707.
Beltrán-Acosta CR, Zapata-Narváez YA, Millán-Montaño DA, Díaz-García A (2022) Efecto de Bacillus amyloliquefaciens y Pseudomonas migulae sobre el crecimiento de plántulas de uchuva (Physalis peruviana L.) en semillero. Agronomía Mesoamericana 34(1): 50669. https://doi.org/10.15517/am.v34i1.50669.
Chandrasekaran M, Chun SC, Oh JW, Paramasivan M, Saini RK, Sahayarayan JJ (2019) Bacillus subtilis CBR05 for Tomato (Solanum lycopersicum) Fruits in South Korea as a Novel Plant Probiotic Bacterium (PPB): Implications from Total Phenolics, Flavonoids, and Carotenoids Content for Fruit Quality. Agronomy 9(12): 838. https://doi.org/10.3390/agronomy9120838.
Chávez-Arteaga KT, Guato-Molina JJ, Peñafiel-Jaramillo MF, Mestanza-Uquillas CA, Canchignia-Martínez HF (2018) Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Ciencia y Tecnología 11(2): 17-29. https://doi.org/10.18779/cyt.v11i2.232.
Cho S-T, Chang H-H, Egamberdieva D, Kamilova F, Lugtenberg B, Kuo C-H (2015) Genome analysis of Pseudomonas fluorescens PCL1751: A rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE 10(10): e0140231. https://doi.org/10.1371/journal.pone.0140231.
Costa-Gutierrez SB, Adler C, Espinosa-Urgel M, de Cristóbal RE (2022) Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Applied Microbiology and Biotechnology 106(9-10): 3351-3367. https://doi.org/10.1007/s00253-022-11881-7.
Criollo H, Lagos TC, Fischer G, Mora L, Zamudio L (2014) Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda. Revista Colombiana de Ciencias Hortícolas, 8(1): 34-43. https://doi.org/10.17584/rcch.2014v8i1.2798.
Danish S, Zafar-ul-Hye M, Fahad S, Saud S, Brtnicky M, Hammerschmiedt T, Datta R (2020) Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability 12(15): 6286. https://doi.org/10.3390/su12156286.
Espinosa-Palomeque B, Cano-Ríos P, Salas-Pérez L, García-Hernández JL, Preciado-Rangel P, Sáenz-Mata J, Reyes-Carrillo JL (2019) Bioinoculantes y concentración de la solución nutritiva sobre la producción y calidad de tomate. Biotecnia 21(3): 100-107. https://doi.org/10.18633/biotecnia.v21i3.1038.
Espinosa-Rodríguez M, Sandoval-Villa M, García-Cruz E, Antúnez-Ocampo O, Pérez-Pacheco R, Sabino-López JE (2020) El mercado de la uchuva en México. Revista Mexicana de Ciencias Agrícolas 11(8): 1789-1802. https://doi.org/10.29312/remexca.v11i8.2228.
FAO, FIDA, OMS, PMA, UNICEF (2023) El estado de la seguridad alimentaria y la nutrición en el mundo 2023. Urbanización, transformación de los sistemas agroalimentarios y dietas saludables a lo largo del continuo rural-urbano. Serie El Estado del Mundo. FAO. Roma, Italia. 337p. https://doi.org/10.4060/cc3017es. Fecha de consulta: 9 de julio de 2024.
Fischer G, Almanza-Merchán PJ, Miranda D (2014) Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura 36(1): 01-15. https://doi.org/10.1590/0100-2945-441/13.
Gangaraddi V, Brahmaprakash GP (2018) Comparative Evaluation of Selected Formulations of a Microbial Consortium. Mysore Journal of Agricultural Sciences 52(2): 255-262.
Gastelum-Osorio DA, Sandoval-Villa M, Trejo-López C, Castro-Brindis R (2013) Fuerza iónica de la solución nutritiva y densidad de plantación sobre la producción y calidad de frutos de Physalis peruviana L. Revista Chapingo Serie Horticultura 19(2): 197-210. https://doi.org/10.5154/r.rchsh.2012.01.002.
Giannelli G, Potestio S, Visioli G (2023) The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. Plants 12(11): 2197. https://doi.org/10.3390/plants12112197.
González-Rodríguez G, Espinosa-Palomeque B, Cano-Ríos P, Moreno-Reséndez A, Leos-Escobedo L, Sánchez-Galván H, Sáenz-Mata J (2018) Influencia de rizobacterias en la producción y calidad nutracéutica de tomate bajo condiciones de invernadero. Revista Mexicana de Ciencias Agrícolas, 9(2): 367-379. https://doi.org/10.29312/remexca.v9i2.1078.
Guevara-Collazos AJ, Villagran-Munar EA, Velasquez-Ayala FA, González-Velandia KD (2019) Evaluación del comportamiento poscosecha de uchuva provenientes de sistemas de producción convencionales y agroecológicos. Revista Mexicana de Ciencias Agrícolas 10(6): 1273-1285. https://doi.org/10.29312/remexca.v10i6.1492.
Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, Song XP, Yang LT, Li YR (2020) Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium with Biocontrol and Stress Tolerance Properties, Isolated from Sugarcane Root. Frontiers in Microbiology 11: 580081. https://doi.org/10.3389/fmicb.2020.580081.
Habibi S, Yokoyama T, Haidari MD, Torii A, Yasuda M, Ohkama-Ohtsu N (2023) Analyzing Single and Combined Cultures of Plant Growth-Promoting Rhizobacteria Isolates from Afghanistan as a Potential Biofertilizer for Rice Growth and Development. Agriculture 13(12): 2252. https://doi.org/10.3390/agriculture13122252.
Hernández-Montiel LG, Chiquito-Contreras RG, Castillo-Rocha DG, Chiquito-Contreras CJ, Vidal-Hernández L, Beltrán-Morales FA (2018) Efecto de microcápsulas de Pseudomonas putida sobre crecimiento y rendimiento de pimiento morrón. Revista Mexicana de Ciencias Agrícolas 9(spe20): 4223-4233. https://doi.org/10.29312/remexca.v0i20.992.
Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science 8: 1768. https://doi.org/10.3389/fpls.2017.01768.
Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biological Research 52(1): 39. https://doi.org/10.1186/s40659-019-0246-3.
Kafi SA, Arabhosseini S, Karimi E, Koobaz P, Mohammadi A, Sadeghi A (2021) Pseudomonas putida P3-57 induces cucumber (Cucumis sativus L.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Scientia Horticulturae 280, https://doi.org/10.1016/j.scienta.2021.109942.
Katsenios N, Andreou V, Sparangis P, Djordjevic N, Giannoglou M, Chanioti S, Stergiou P, Xanthou M-Z, Kakabouki I, Vlachakis D, Djordjevic S, Katsaros G, Efthimiadou A (2021) Evaluation of plant growth promoting bacteria strains on growth, yield and quality of industrial tomato. Microorganisms 9(10): 2099. https://doi.org/10.3390/microorganisms9102099.
Kucuker E, Celik K, Kizgin-Ozcengiz C, Ogurlu F, Aglar E (2023) Pre-harvest application of aminoethoxyvinylglycine, salicylic acid and plant growth promoting rhizobacteria on fruit quality of ‘Sweetheart’ sweet cherry. Turkish Journal of Agriculture - Food Science and Technology 11(4): 871-875. https://doi.org/10.24925/turjaf.v11i4.871-875.5860.
Llerena W, Samaniego I, Angós I, Brito B, Ortiz B, Carrillo W (2019) Biocompounds content prediction in ecuadorian fruits using a mathematical model. Foods 8(8): 284. https://doi.org/10.3390/foods8080284.
Lucas JA, Garcia-Villaraco A, Montero-Palmero MB, Montalban B, Ramos-Solano B, Gutierrez-Mañero FJ (2023) Physiological and genetic modifications induced by plant-growth-promoting rhizobacteria (PGPR) in tomato plants under moderate water stress. Biology 12(7): 901. https://doi.org/10.3390/biology12070901.
Maheshwari DK, Saraf M, Dheeman S (2019) Plant growth-promoting rhizobacteria (PGPR) as protagonists of ever-sustained agriculture: An introduction. Chapter 1. In: Maheshwari D, Dheeman S (eds) Field crops: Sustainable management by PGPR. Sustainable Development and Biodiversity. Springer, Cham. pp. 1-10. https://doi.org/10.1007/978-3-030-30926-8_1.
Martínez-de la Cruz S, González-Fuentes JA, Robledo-Olivo A, Mendoza-Villarreal R, Hernández-Pérez A, Dávila-Medina MD (2025) Efecto de la aplicación de sustancias húmicas y rizobacterias en fruto de frambuesa. Revista Mexicana de Ciencias Agrícolas 16(1): ME:e3191. https://doi.org/10.29312/remexca.v16i1.3191.
Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero-Valdivieso MF, Cáez-Ramírez G (2017) Cytotoxic and immunomodulatory potential activity of Physalis peruviana fruit extracts on cervical cancer (HeLa) and fibroblast (L929) cells. Journal of Evidence-Based Complementary & Alternative Medicine 22(4): 777-787. https://doi.org/10.1177/2156587217718751.
Minitab (2019) Minitab® Statistical Software. Minitab, LLC. All Rights Reserved. Quality Plaza 1829 Pine Hall Rd State College, PA, USA. https://www.minitab.com/es-mx/. Fecha de consulta: 7 de enero de 2025.
Miranda D, Fischer G, Mewis I, Rohn S, Ulrichs C (2014) Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). Journal of Applied Botany and Food Quality 87: 67-73. https://doi.org/10.5073/JABFQ.2014.087.010.
Miranda D, Fischer G (2021) Avances tecnológicos en el cultivo de la uchuva (Physalis peruviana L.) en Colombia. En: Fischer G, Miranda D, Magnitskiy S, Balaguera-López HE, Molano Z (eds) Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas. Bogotá, Colombia. pp. 14-36. https://doi.org/10.17584/IBerries.
Monroy-Velandia D, Coy-Barrera E (2021) Effect of salt stress on growth and metabolite profiles of cape gooseberry (Physalis peruviana L.) along three growth stages. Molecules 26(9): 2756. https://doi.org/10.3390/molecules26092756.
Moreno-Reséndez A, García-Mendoza V, Reyes-Carrillo JL, Vásquez-Arroyo J, Cano-Ríos P (2018) Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20(1): 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707.
Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Science and Plant Nutrition 64(4): 520-525. https://doi.org/10.1080/00380768.2018.1461002.
Obregón-La Rosa AJ, Contreras-López E, Flores-Juárez E, Gonzales-Barrón Ú, Muñoz AM, Ramos-Escudero F (2023) Nutritional and antioxidant profile of the Physalis fruit grown in three Andean regions of Peru. Roczniki Panstwowego Zakladu Higieny 74(1): 49-57. https://doi.org/10.32394/rpzh.2023.0247.
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment 743. https://doi.org/10.1016/j.scitotenv.2020.140682.
Olivares-Tenorio ML, Dekker M, Verkerk R, van Boekel MAJS (2016) Health-promoting compounds in cape gooseberry (Physalis peruviana L.): review from a supply chain perspective. Trends in Food Science and Technology 57(part A): 83-92. https://doi.org/10.1016/j.tifs.2016.09.009.
Pérez-Rodriguez MM, Pontin M, Lipinski V, Bottini R, Piccoli P, Cohen AC (2020) Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition 20(4): 1614-1624. https://doi.org/10.1007/s42729-020-00233-x.
Pérez-Rodriguez MM, Pontin M, Piccoli P, Lobato-Ureche MA, Gordillo MG, Funes-Pinter I, Cohen AC (2022) Halotolerant native bacteria Enterobacter 64S1 and Pseudomonas 42P4 alleviate saline stress in tomato plants. Physiologia Plantarum 174(4): e13742. https://doi.org/10.1111/ppl.13742.
Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils 51(4): 403-415. https://doi.org/10.1007/s00374-015-0996-1.
Pinzón EH, Reyes AJ, Álvarez-Herrera JG, Leguizamo MF, Joya JG (2015) Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Revista de Ciencias Agrícolas 32(2): 26-35. https://doi.org/10.22267/rcia.153202.10.
Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2020) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21: 49-68. https://doi.org/10.1007/s42729-020-00342-7.
Reed L, Glick BR (2023) The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture 13(5): 1089. https://doi.org/10.3390/agriculture13051089.
Sabino-López JE, Sandoval-Villa M, Alcántar-González G, Ortiz-Solorio C, Vargas-Hernández M, Colinas-León T (2018) Fecha de trasplante, boro, potasio y poda en la producción de frutos de Physalis peruviana L. en hidroponía e invernadero. Agrociencia 52(2): 255-265.
Sahu B, Singh J, Shankar G, Pradhan A (2018) Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: a review. International Journal of Chemical Studies 6(2): 01-07.
Sandini IE, Pacentchuk F, Hungria M, Nogueira MA, Cruz SP, Nakatani AS, Araujo RS (2019) Seed inoculation with Pseudomonas fluorescens promotes growth, yield and reduces nitrogen application in maize. International Journal of Agriculture & Biology 22(6): 1369-1375. https://doi.org/10.17957/IJAB/15.1210.
Shenstone E, Lippman Z, Van Eck J (2020) A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition 75(3): 316-325. https://doi.org/10.1007/s11130-020-00821-3.
Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14(6): 2167-2180. https://doi.org/10.3390/molecules14062167.
Thuy NM, Phuong NP, Suong CTD, Tai NV (2020) Physical and chemical characteristics of goldenberry (Physalis peruviana) grown in Lam Dong province, Vietnam. Food Research 4(4): 1217-1225. https://doi.org/10.26656/fr.2017.4(4).085.
USDA (2019) Food Data Central of the United States Department of Agriculture. Oranges, raw, all commercial varieties. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169097/nutrients. Fecha de consulta: 12 de diciembre de 2024.
Wang X, Ran C, Fu Y, Han L, Yang X, Zhu W, Zhang H, Zhang Y (2024) Application of exogenous ascorbic acid enhances cold tolerance in tomato seedlings through molecular and physiological responses. International Journal of Molecular Sciences 25(18): 10093. https://doi.org/10.3390/ijms251810093.
Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9(1801): 7-12. https://doi.org/10.3389/fpls.2018.01801.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0