Frecuencias alélicas de polimorfismos en genes de la ruta AMPK del metabolismo lipídico en ganado Wagyu
DOI:
https://doi.org/10.19136/era.a12n3.4237Palabras clave:
Acidos grasos, calidad, carne, marcadores moleculares, SNPResumen
En ganado bovino la vía AMPK actúa como un sensor energético que se activa por aumentos en la proporción celular AMP/ATP e influye sobre múltiples procesos metabólicos modificando el perfil de ácidos grasos (FA) en distintos tejidos. El objetivo del trabajo fue estimar y comparar las frecuencias alélicas de 27 SNP en 22 genes de la ruta AMPK, en poblaciones de ganado Wagyu y sus cruces. Se colectaron 111 muestras de Longissimus dorsi de Wagyu y Wagyu-Cross, las cuales se agruparon por grupo genético, para tipificar 27 SNP ubicados dentro de los 22 genes que participan en la ruta AMPK. Se examinó el desequilibrio de ligamiento, el equilibrio de Hardy-Weinberg (H-W), y la diferencia génica entre los grupos genéticos. Se encontraron 20 SNP polimórficos. HNF4 ss61961144 y SCD g.10213 no se encontraron en equilibrio de H-W. Los SNP dentro de SCD1 se encontraron en desequilibrio de ligamiento al igual que los SNP dentro de PRKAR2A; DGAT1 K232A, IGF2R ss77831885, MYOZ1 ss77831945, PRKAR2A ss62837580, PRKAR2A ss628376667, SCD1 g.10329, SCD5 134718 y SRPRA 4150, los cuales presentaron diferencia génica entre grupos. En conclusión, SCD1 g.10329 es el marcador con mayor solidez, que presenta diferencia génica entre grupos, por lo que puede utilizarse en selección asistida por marcadores (MAS) para mejorar el perfil de FA en carne, adicionalmente se propone hacer análisis de asociación a FA de SLC2A4 ss62538460, PLTP ss77832104, PPARGC1A c.1892+19 y MYOZ1 ss77831945, debido a que son SNP con cualidades para implementarse en el mejoramiento genético asistido.
Descargas
Referencias
Azis R, Jakaria, Anggraeni A, Gunawan A (2020) Acetyl-CoA carboxylase alpha gene polymorphism and its association with milk fatty acid of Holstein Friesian using real-time PCR method. Tropical Animal Science Journal 43: 306-313. https://doi.org/10.5398/tasj.2020.43.4.306
Bartoň L, Bureš D, Kott T, Řehák D (2016) Associations of polymorphisms in bovine DGAT1, FABP4, FASN, and PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls. Meat Science 114: 18-23. https://doi.org/10.1016/j.meatsci.2015.12.004
Bhuiyan MSA, Yu SL, Jeon JT, Yoon D, Cho YM, Park EW, Kim KS, Lee JH (2009) DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences 22: 765-773. https://doi.org/10.5713/ajas.2009.80573
Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K (2015) Carcinogenicity of consumption of red and processed meat. The Lancet Oncology 16: 1599-1600. https://doi.org/10.1016/S1470-2045(15)00444-1
Bovenhuis H, Visker MHPW, Poulsen NA, Sehested J, Van Valenberg HJF, Van Arendonk JAM, Larsen LB, Buitenhuis AJ (2016) Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of Dairy Science 99: 3113-3123. https://doi.org/10.3168/jds.2015-10462
Branda Sica A, Ravagnolo O, Brito G, Baldi F, LaManna A, Banchero G, Navajas EA, Rincón G, Medrano JF (2014) Evaluación de panel SNP en genes candidatos de vías metabólicas para carne en hereford. Archivos de Zootecnia 63: 73-84. https://doi.org/10.4321/S0004-05922014000100008
Calder PC (2015) Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition 39: 18S-32S. https://doi.org/10.1177/0148607115595980
Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism 25: 138-145. https://doi.org/10.1016/j.tem.2013.12.001
Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM, Snyder M (2012) A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Research 22: 1668-1679. https://doi.org/10.1101/gr.127761.111
Chiazza F, Collino M (2016) Peroxisome proliferator-activated receptors (PPARs) in glucose control, molecular nutrition and diabetes. Academic Press. pp. 105-114. https://doi.org/10.1016/B978-0-12-801585-8.00009-9
Dunner S, Sevane N, Garcia D, Levéziel H, Williams JL, Mangin B, Valentini A (2013) Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Animal Genetics 44: 493-501. https://doi.org/10.1111/age.12044
Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86: 839-848. https://doi.org/10.1016/j.biochi.2004.09.018
Ferst JG, Rovani MT, Dau AMP, Gasperin BG, Antoniazzi AQ, Bordignon V, Oliveira DE, Gonçalves PBD, Ferreira R (2020) Activation of PPARG inhibits dominant follicle development in cattle. Theriogenology 142: 276-283. https://doi.org/10.1016/j.theriogenology.2019.10.032
Frank D, Ball A, Hughes J, Krishnamurthy R, Piyasiri U, Stark J (2016) Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. Journal of Agricultural and Food Chemistry 64: 4299-4311. https://doi.org/10.1021/acs.jafc.6b00160
Gamarra D, Aldai N, Arakawa A, De-Pancorbo MM, Taniguchi M (2021) Effect of a genetic polymorphism in SREBP1 on fatty acid composition and related gene expression in subcutaneous fat tissue of beef cattle breeds. Animal Science Journal 92: e13521. https://doi.org/10.1111/asj.13521
Garcia D, Shaw RJ (2017) AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Molecular Cell 66: 789-800. https://doi.org/10.1016/j.molcel.2017.05.032
Gotoh T, Nishimura T, Kuchida K, Mannen H (2018) The Japanese wagyu beef industry: current situation and future prospects - A review. Asian-Australasian Journal of Animal Sciences 31: 933-950. https://doi.org/10.5713/ajas.18.0333
Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P (2002) Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222-231. https://doi.org/10.1101/gr.224202
Grzes M, Sadkowski S, Rzewuska K, Szydlowski M, Switonski M (2016) Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level. Molecular Biology Reports 43: 381-389. https://doi.org/10.1007/s11033-016-3969-z
Gui LS, Jia JL (2018) Effect of single nucleotide polymorphisms in the UCP3 and FOXO1 genes on carcass quality traits in Qinchuan cattle. Journal of Animal and Feed Sciences 27: 301-306. https://doi.org/10.22358/jafs/97366/2018
Gui LS, Raza SHA, Sun YG, Khan R, Ullah I, Han YC (2019) Detection of polymorphisms in the promoter of bovine SIRT1 gene and their effects on intramuscular fat content in Chinese indigenous cattle. Gene 700: 47-51. https://doi.org/10.1016/j.gene.2019.03.022
Hadar A, Gozes I, Gurwitz D (2017) RGS2 and SIRT1 link renin angiotensin aldosterone system to alzheimer’s disease. In: Gozes I (ed) Neuroprotection in Alzheimer’s disease. Academic Press. pp. 239-251. https://doi.org/10.1016/B978-0-12-803690-7.00012-0
Han C, Vinsky M, Aldai N, Dugan MER, McAllister TA, Li C (2013) Association analyses of DNA polymorphisms in bovine SREBP-1, LXRα, FADS1 genes with fatty acid composition in Canadian commercial crossbred beef steers. Meat Science 93: 429-436. https://doi.org/10.1016/j.meatsci.2012.10.006
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19: 128. https://doi.org/10.1186/s43141-021-00231-1
He W, Gao M, Yang R, Zhao Z, Mi J, Sun H, Xiao H, Fang X (2022) The effect of CPT1B gene on lipid metabolism and its polymorphism analysis in chinese simmental cattle. Animal Biotechnology 33: 1428-1440. https://doi.org/10.1080/10495398.2021.1904966
Herms A, Bosch M, Reddy BJN, Schieber NL, Fajardo A, Rupérez C (2015) AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications 6: 7176. https://doi.org/10.1038/ncomms8176
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research 51(D1): D587-D592. https://doi.org/10.1093/nar/gkac963
Kęsek-Woźniak MM, Wojtas E and Zielak-Steciwko AE (2020) Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals 10: 997. https://doi.org/10.3390/ani10060997
Khan MI, Jo C, Tariq MR (2015) Meat flavor precursors and factors influencing flavor precursors - A systematic review. Meat Science 110: 278-284. 110. https://doi.org/10.1016/j.meatsci.2015.08.002
Kim BK, Yoo HI, Choi K, Lee AR, Yoon SK (2016) Regulation of SRPR expression by miR-330-5p controls proliferation of mouse epidermal keratinocyte. PLoS ONE 11: e0164896. https://doi.org/10.1371/journal.pone.0164896
Kong HS, Oh JD, Lee JH, Yoon DH, Choi YH, Cho BW, Lee HK, Jeon GH (2007) Association of sequence variations in DGAT1 gene with economic traits in Hanwoo (Korea Cattle). Asian-Australasian Journal of Animal Sciences 20: 817-820. https://doi.org/10.5713/ajas.2007.817
Koren D, Palladino A (2016) Hypoglycemia, Genetic diagnosis of endocrine disorders. 2nd Edition, Academic Press 31-75. https://doi.org/10.1016/B978-0-12-800892-8.00003-8
Lee JY, Ha JJ, Park YS, Yi JK, Lee S, Mun S, Han K, Kim JJ, Kim HJ, Oh DY (2015) Relationship between single nucleotide polymorphisms in the peroxisome proliferator-activated receptor gamma gene and fatty acid composition in Korean native cattle. Asian-Australasian Journal of Animal Sciences 29: 184-194. https://doi.org/10.5713/ajas.15.0502
Lee SH, Lee JH, Im SS (2020) The cellular function of SCAP in metabolic signaling. Experimental and Molecular Medicine 52: 724-729. https://doi.org/10.1038/s12276-020-0430-0
Li C, Aldai N, Vinsky M, Dugan MER, McAllister TA (2012) Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Animal Genetics 43: 93-97. https://doi.org/10.1111/j.1365-2052.2011.02217.x
Li X, Ekerljung M, Lundström K, Lundén A (2013) Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Science 94: 153-158. https://doi.org/10.1016/j.meatsci.2013.01.010.
Medrano JF, Rincon G (2008) Snps associated with fatty acid composition of bovine meat and milk. Patent Application Publication US 2011/0045469 A1.
Mota JDO, Guillou S, Pierre F, Membré JM (2021) Public health risk-benefit assessment of red meat in France: Current consumption and alternative scenarios. Food and Chemical Toxicology 149: 111994. https://doi.org/10.1016/j.fct.2021.111994
Motoyama M, Sasaki K, Watanabe A (2016) Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Science 120: 10-18. https://doi.org/10.1016/j.meatsci.2016.04.026
Narukami T, Sasazaki S, Oyama K, Nogi T, Taniguchi M, Mannen H (2011) Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Animal Science Journal 82: 406-411. https://doi.org/10.1111/j.1740-0929.2010.00855.x
Näslund J, Fikse WF, Pielberg GR, Lundén A (2008) Frequency and effect of the bovine Acyl-CoA:Diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. Journal of Dairy Science 91: 2127-2134. https://doi.org/10.3168/jds.2007-0330
Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biological Psychiatry 83: 761-769. https://doi.org/10.1016/j.biopsych.2017.12.014
Oh DY, La B, Lee YS, Byun Y, Lee J, Yeo G, Yeo J (2013) Identification of novel single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) gene associated with fatty acid composition in Korean cattle. Molecular Biology Reports 40: 3155-3163. https://doi.org/10.1007/s11033-012-2389-y
Oh DY, Lee YS, Yeo JS (2011) Identification of the SNP (single nucleotide polymorphism) of the stearoyl-CoA desaturase (SCD) associated with unsaturated fatty acid in Hanwoo (Korean cattle). Asian-Australasian Journal of Animal Sciences 24: 757-765. https://doi.org/10.5713/ajas.2011.10410
Ohsaki H, Tanaka A, Hoashi S, Sasazaki S, Oyama K, Taniguchi M, Mukai F, Mannen H (2009) Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese black cattle herds. Animal Science Journal 80: 225-232. https://doi.org/10.1111/j.1740-0929.2009.00638.x
O’Quinn TG, Woerner DR, Engle TE, Chapman PL, Legako JF, Brooks JC, Belk KE, Tatum JD (2016) Identifying consumer preferences for specific beef flavor characteristics in relation to cattle production and postmortem processing parameters. Meat Science 112: 90-102. https://doi.org/10.1016/j.meatsci.2015.11.001
Pan G, Cavalli M, Wadelius C (2021) Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1864: 194724. https://doi.org/10.1016/j.bbagrm.2021.194724
Pegolo S, Cecchinato A, Mele M, Conte G, Schiavon S, Bittante G (2016) Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. Journal of Dairy Science 99: 4558-4573. https://doi.org/10.3168/jds.2015-10420.
Poletto AC, Furuya DT, David-Silva A, Ebersbach-Silva P, Corrêa-Giannella ML, Passarelli M, Passarelli M, Machado UF (2015) Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Molecular and Cellular Endocrinology 401: 65-72. https://doi.org/10.1016/j.mce.2014.12.001
Qin W, Liang CN, Guo X, Chu M, Pei J, Bao PJ, Wu XY, Li TK, Yan P (2015) PPARα signal pathway gene expression is associated with fatty acid content in yak and cattle longissimus dorsi muscle. Genetics and Molecular Research 14: 14469-14478. https://doi.org/10.4238/2015.November.18.9
Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. Journal of Dairy Research 79: 66-75. https://doi.org/10.1017/S002202991100080X
Rousset (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
Samuel B, Dadi H, Dinka H (2023) Effect of the DGAT1 K232A mutation and breed on milk traits in cattle populations of Ethiopia. Frontiers in Animal Science 4: 1096706. https://doi.org/10.3389/fanim.2023.109670
Sánchez-Ramos LE, Sifuentes-Rincón AM, Magaña-Monforte JG, Moreno-Medina VR, Parra-Bracamonte GM (2023) Polimorfismos en genes candidatos a la composición de ácidos grasos y su efecto en carne Wagyu-Cross. Revista MVZ Cordoba 28: e3090. https://doi.org/10.21897/rmvz.3090
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Sherry ST (2023). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 51(D1): D29-D38. https://doi.org/10.1093/nar/gkac1032
Schennink A, Bovenhuis H, Léon-Kloosterziel KM, Van Arendonk JAM, Visker MHPW (2009) Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics 40: 909-916. doi: 10.1111/j.1365-2052.2009.01940.x
Sevane N, Armstrong E, Cortés O, Wiener P, Wong RP, Dunner S (2013) Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Science 94: 328-335. doi: 10.1016/j.meatsci.2013.02.014
Sevane N, Crespo I, Cañón J, Dunner S (2011) A Primer-Extension Assay for simultaneous use in cattle Genotype Assisted Selection, parentage and traceability analysis. Livestock Science 137: 141-150. doi: 10.1016/j.livsci.2010.10.011
Sevane N, Levéziel H, Nute GR, Sañudo C, Valentini A, Williams J, Dunner S (2014) Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds. Journal of Animal Science and Biotechnology 5: 20. https://doi.org/10.1186/2049-1891-5-20
Szklarczyk D, Kirsch R, Koutrouli M, Nastou KC, Mehryary F, Hachilif R, Jensen LJ (2023) The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51(D1): D638–D646. https://doi.org/10.1093/nar/gkac1000
Smith SB, Gill CA, Lunt DK, Brooks MA (2009) Regulation of fat and fatty acid composition in beef cattle. Asian-Australasian Journal of Animal Sciences 22: 1225-1233. https://doi.org/10.5713/ajas.2009.r.10
Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S (2004) Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 15: 142-148. https://doi.org/10.1007/s00335-003-2286-8
Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics 34: 354-357 https://doi.org/10.1046/j.1365-2052.2003.01011.x
The UniProt Consortium (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research 51(D1): D523-D531. Oxford University Press. https://doi.org/10.1093/nar/gkw1099
Tucker S, Philipson L, Naylor R (2019) The role of monogenic diabetes in pediatric type II diabetes, Pediatric Type II Diabetes. Elsevier. pp. 25-35. https://doi.org/10.1016/B978-0-323-55138-0.00005-X
Tyagi S, Gupta P, Saini A, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology and Research 2: 246-240. https://doi.org/10.4103/2231-4040.90879
Urtnowski P, Oprzadek J, Pawlik A, Dymnicki E (2011) The DGAT-1 Gene Polymorphism is informative QTL marker for meat quality in beef cattle. Macedonian Journal of Animal Science 1: 3-8. https://doi.org/10.54865/mjas111003u
Vázquez-Mosquera JM, Fernandez-Novo A, De Mercado E, Vázquez-Gómez M, Gardon JC, Pesántez-Pacheco JL, Astiz S (2023) Beef nutritional characteristics, fat profile and blood metabolic markers from purebred Wagyu, crossbred Wagyu and crossbred European steers raised on a fattening farm in Spain. Animals 13: 864. https://doi.org/10.3390/ani13050864
Vela-Vásquez DA, Sifuentes-Rincón AM, Delgado-Enciso I, Delgado-Enciso OG, Ordaz-Pichardo C, Arellano-Vera W, Treviño‐Alvarado V (2021) Improvement of serum lipid parameters in consumers of Mexican Wagyu-Cross beef: A randomized controlled trial. Journal of Food Science 86: 2713-2716. https://doi.org/10.1111/1750-3841.15739
Wang C, Wang S, He X, Wu L, Li Y, Guo J (2020) Combination of spectra and texture data of hyperspectral imaging for prediction and visualization of palmitic acid and oleic acid contents in lamb meat. Meat Science 169: 108194. https://doi.org/10.1016/j.meatsci.2020.108194
Warfel JD, Bermudez EM, Mendoza TM, Ghosh S, Zhang J, Elks CM (2016) Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice. Scientific Reports 6: 37941. https://doi.org/doi:10.1038/srep37941
Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M (2005) The bovine PPARGC1A gene: Molecular characterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics 21: 1-13. https://doi.org/10.1152/physiolgenomics.00103.2004
Williams JL, Dunner S, Valentini A, Mazza R, Amarger V, Checa ML (2009) Discovery, characterization and validation of single nucleotide polymorphisms within 206 bovine genes that may be considered as candidate genes for beef production and quality. Animal Genetics 40: 486-491. https://doi.org/10.1111/j.1365-2052.2009.01874.x
Winther AML, Kristensen KK, Kumari A, Ploug M (2021) Expression and one-step purification of active LPL contemplated by biophysical considerations. Journal of Lipid Research 62: 100149. https://doi.org/10.1016/J.JLR.2021.100149
Wolk A (2017) Potential health hazards of eating red meat. Journal of Internal Medicine 281: 106-122. https://doi.org/10.1111/joim.12543
Wood JD, Enser M (2017) Manipulating the fatty acid composition of meat to improve nutritional value and meat quality. New aspects of meat quality: From genes to ethics. Woodhead Publishing. pp. 501-535. https://doi.org/10.1016/B978-0-08-100593-4.00023-0
Wu XX, Yang ZP, Shi XK, Li JY, Ji DJ, Mao YJ, Chang LL, Gao HJ (2012) Association of SCD1 and DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle and their distribution in eight Chinese cattle breeds. Molecular Biology Reports 39: 1065-1071. https://doi.org/10.1007/s11033-011-0832-0
Xu L, Zhang LP, Yuan ZR, Guo LP, Zhu M, Gao X Gao HJ, Li JY, Xu SZ (2013) Polymorphism of SREBP1 is associated with beef fatty acid composition in Simmental bulls. Genetics and Molecular Research 12: 5802-5809. https://doi.org/10.4238/2013.November.22.7
Yu PY, Guttridge DC (2018) Dysregulated myogenesis in rhabdomyosarcoma. Current Topics in Developmental Biology. Academic Press. 126: 285-297 https://doi.org/10.1016/BS.CTDB.2017.10.007
Zhang S, Knight TJ, Reecy JM, Wheeler TL, Shackelford SD, Cundiff LV, Beitz DC (2010) Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-α gene with beef fatty acid composition. Animal Genetics 41: 417-420. https://doi.org/10.1111/j.1365-2052.2009.02006.x
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
![]()
This work is licensed under CC BY-NC-ND 4.0
