Disolventes eutécticos profundos en la extracción de compuestos fenólicos en fruto entero de Brosimum alicastrum

Autores/as

  • Victor Manuel Moo Huchin Instituto Tecnológico de Mérida image/svg+xml
    • Gustavo Aguilar-Piloto Instituto Tecnológico de Mérida image/svg+xml
      • Enrique Sauri-Duch Instituto Tecnológico de Mérida image/svg+xml
        • Manuel Octavio Ramírez-Sucre Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco image/svg+xml
          • Jorge Carlos Canto-Pinto Instituto Tecnológico Superior de Calkiní image/svg+xml
            • Carlos Rolando Ríos-Soberanis

              DOI:

              https://doi.org/10.19136/era.a12n3.4513

              Palabras clave:

              Antioxidante, compuestos fenólicos, extracción, ramón

              Resumen

              Los disolventes eutécticos profundos (DEPs) han sido utilizados en lugar de disolventes orgánicos (como el metanol), en procesos de extracción verde de compuestos fenólicos (CF). El objetivo fue determinar un proceso de extracción de CF con alta capacidad antioxidante en el fruto entero de B. alicastrum, mediante DEPs asistidos de ultrasonido (EAU). La EAU de CF del fruto liofilizado se realizó utilizando 10 DEPs y 50% metanol acuoso (50% Met-OH). Tras determinar el DEPs con mayor contenido de compuestos fenólicos totales (CFT) y capacidad antioxidante, se aplicó un diseño experimental de un solo factor para establecer las condiciones de extracción de CF (contenido de agua en DEPs, temperatura y tiempo de EAU). La EAU de CF se realizó con las mejores condiciones de extracción con DEPs y se comparó con el 50% Met-OH respecto al perfil cromatográfico de CF y la morfología por microscopía electrónica de barrido. El DEPs betaína-glicerol mostró un mayor contenido de CFT (2 200 mg equivalente al ácido gálico 100 g-1) y capacidad antioxidante (1 996.94 mg equivalente al ácido ascórbico 100 g-1) en comparación al 50% Met-OH. El mayor contenido de CFT se obtuvo utilizando 20% de agua en DEPs a 40 °C y 30 min de EAU. El DEPs betaína-glicerol y el 50% Met-OH obtuvieron el mayor contenido de naringina y ácido vanílico, respectivamente. Se concluye que el sistema betaína-glicerol es una opción viable como disolvente verde para la EAU de CF del fruto entero de B. alicastrum.

              Descargas

              Los datos de descarga aún no están disponibles.

              Referencias

              Aguilar-Piloto G, Negrón-Diaz AC, Moo-Huchin VM, Ramírez-Sucre MO, Delgadillo-Díaz M, Cuevas-Glory LF, Sauri-Duch E (2023) Ultrasound-assisted extraction (UAE) of phenolic compounds from Brosimum alicastrum fruit and their antioxidant capacity. Ecosistemas y Recursos Agropecuarios 10(NEIII): e3655. https://doi.org/10.19136/era.a10niii.3655

              Airouyuwa JO, Mostafa H, Riaz A, Maqsood S (2022) Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. Ultrasonics Sonochemistry 91: 106233. https://doi.org/10.1016/j.ultsonch.2022.106233

              Ali-Redha A (2021) Review on extraction of phenolic compounds from natural sources using green deep eutectic solvents. Journal of Agricultural and Food Chemistry 69(3): 878-912. https://doi.org/10.1021/acs.jafc.0c06641

              Alrugaibah M, Washington TL, Yagiz Y, Gu L (2021) Ultrasound-assisted extraction of phenolic acids, flavonols, and flavan-3-ols from muscadine grape skins and seeds using natural deep eutectic solvents and predictive modelling by artificial neural networking. Ultrasonics Sonochemistry 79: 105773. https://doi.org/10.1016/j.ultsonch.2021.105773

              Antony A, Farid M (2022) Effect of temperatures on polyphenols during extraction. Applied Sciences 12(4): 2107. https://doi.org/10.3390/app12042107

              Canto-Pinto JC, Pat-Moreno NI, Moo-Huchin VM, Pérez-Pacheco E, Chay-Canul AJ, Estrada-León RJ, Sauri-Duch E, Ríos-Soberanis CR (2024) Comparison of proximate composition, phytochemical contents, antioxidant capacity and polyphenols in Brosimum alicastrum leaf, fruit and seed. Journal of Animal & Plant Sciences 34(4): 875-885. https://doi.org/10.36899/JAPS.2024.4.0772

              Fanali C, Posta SD, Dugo L, Russo M, Gentili A, Mondello L, De Gara L (2020) Application of deep eutectic solvents for the extraction of phenolic compounds from extra‐virgin olive oil. Electrophoresis 41(20): 1752-1759. https://doi.org/10.1002/elps.201900423

              Fu X, Wang D, Belwal T, Xu Y, Li L, Luo Z (2021) Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chemistry 355: 129577. https://doi.org/10.1016/j.foodchem.2021.129577

              Gao H, Wang Y, Guo Z, Liu Y, Wu Q, Xiao J (2022) Optimization of ultrasound-assisted extraction of phenolics from Asparagopsis taxiformis with deep eutectic solvent and their characterization by ultra-high-performance liquid chromatography-mass spectrometry. Frontiers in Nutrition 9: 1036436. https://doi.org/10.3389/fnut.2022.1036436

              Gao MZ, Cui Q, Wang L-T, Meng Y, Yu L, Li Y-Y, Fu Y-J (2020) A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchemical Journal 154: 104598. https://doi.org/10.1016/j.microc.2020.104598

              Halliwell B (2024) Understanding mechanisms of antioxidant action in health and disease. Nature Reviews Molecular Cell Biology 25(1): 13-33. https://doi.org/10.1038/s41580-023-00645-4

              Hang NT, Uyen TTT, Van Phuong N (2022) Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent. Journal of Pharmaceutical and Biomedical Analysis 207(5): 114406. https://doi.org/10.1016/j.jpba.2021.114406

              Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, Gupta S, Arshad MF, Porwal O, Jha NK (2022) Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends in Food Science & Technology 122: 187-200. https://doi.org/10.1016/j.tifs.2022.02.023

              Krisanti EA, Saputra K, Arif MM, Mulia K (2019) Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds. AIP Conference proceedings. 2175(1): 020040. https://doi.org/10.1063/1.5134604

              Liu X-Y, Ou H, Gregersen H, Zuo J (2023) Deep eutectic solvent-based ultrasound-assisted extraction of polyphenols from Cosmos sulphureus. Journal of Applied Research on Medicinal and Aromatic Plants 32: 100444. https://doi.org/10.1016/j.jarmap.2022.100444

              Losoya-Sifuentes C, Pinto-Jimenez K, Cruz M, Rodriguez-Jasso RM, Ruiz HA, Loredo-Treviño A, López-Badillo CM, Belmares R (2023) Determination of nutritional and antioxidant properties of Maya Nut flour (Brosimum alicastrum) for development of functional foods. Foods 12(7): 1398. https://doi.org/10.3390/foods12071398

              Mansinhos I, Gonçalves S, Rodríguez-Solana R, Ordóñez-Díaz JL, Moreno-Rojas JM, Romano A (2021) Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (chaytor) franco. Antioxidants 10(4): 582. https://doi.org/10.3390/antiox10040582

              Mansur AR, Song N-E, Jang HW, Lim T-G, Yoo M, Nam TG (2019) Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chemistry 293: 438-445. https://doi.org/10.1016/j.foodchem.2019.05.003

              Mero A, Koutsoumpos S, Giannios P, Stavrakas I, Moutzouris K, Mezzetta A, Guazzelli L (2023) Comparison of physicochemical and thermal properties of choline chloride and betaine-based deep eutectic solvents: The influence of hydrogen bond acceptor and hydrogen bond donor nature and their molar ratios. Journal of Molecular Liquids 377: 121563. https://doi.org/10.1016/j.molliq.2023.121563

              Moo-Huchin V, Canto-Pinto J, Cuevas-Glory L, Sauri-Duch E, Pérez-Pacheco E, Betancur-Ancona D (2019) Effect of extraction solvent on the phenolic compounds content and antioxidant activity of Ramon nut (Brosimum alicastrum). Chemical Papers 73: 1647-1657. https://doi.org/10.1007/s11696-019-00716-x

              Moo-Huchin V, Góngora-Chi GJ, Sauri-Duch E, Canto-Pinto JC, Betancur-Ancona D, Ramón-Canul LG (2021) Tortilla de maíz adicionado con harina de Brosimum alicastrum: propiedades fisicoquímicas y actividad antioxidante. CIENCIA ergo-sum 28(3): 1-12. https://doi.org/10.30878/ces.v28n3a1

              Negrón-Diaz AC, Aguilar-Piloto G, Moo-Huchin VM, Delgadillo-Díaz M, Sauri-Duch E (2023) Extracción asistida por ultrasonidos (EAU) de compuestos fenólicos de diferentes tejidos de Brosimum alicastrum. Ecosistemas y Recursos Agropecuarios 10(NEIII): e3659. https://doi.org/10.19136/era.a10nNEIII.3659

              Olvera-Aguirre G, Mendoza-Taco MM, Moo-Huchin VM, Lee-Rangel HA, Roque-Jiménez JA, Gómez-Vázquez A, Dzib-Cauich DA, Vargas-Bello-Pérez E, Chay-Canul AJ (2022) Effect of extraction type on bioactive compounds and antioxidant activity of Moringa oleifera Lam. leaves. Agriculture 12(9): 1462. https://doi.org/10.3390/agriculture12091462

              Ozer HK (2017) Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties 20(11): 2772-2781. https://doi.org/10.1080/10942912.2016.1252389

              Pereira TC, Souza VP, Padilha APF, Duarte FA, Flores EM (2025) Trends and perspectives on the ultrasound-assisted extraction of bioactive compounds using natural deep eutectic solvents. Current Opinion in Chemical Engineering 47: 101088. https://doi.org/10.1016/j.coche.2024.101088

              Qin G, Zhang F, Ren M, Chen X, Liu C, Li G, Gao Q, Qiao L, Jiang Y, Zhu L, Guo Y, Wang G (2023) Eco-friendly and efficient extraction of polyphenols from Ligustrum robustum by deep eutectic solvent assisted ultrasound. Food Chemistry 429: 136828. https://doi.org/10.1016/j.foodchem.2023.136828

              Ramírez-Sánchez S, Ibáñez-Vázquez D, Gutiérrez-Peña M, Ortega-Fuentes MS, García-Ponce LL, Larqué-Saavedra A (2017) El ramón (Brosimum alicastrum Swartz) una alternativa para la seguridad alimentaria en México. Agro Productividad 10(1): 80-83.

              Rente D, Paiva A, Duarte AR (2021) The role of hydrogen bond donor on the extraction of phenolic compounds from natural matrices using deep eutectic systems. Molecules 26(8): 2336. https://doi.org/10.3390/molecules26082336

              Rodríguez-Juan E, Rodríguez-Romero C, Fernández-Bolaños J, Florido MC, Garcia-Borrego A (2021) Phenolic compounds from virgin olive oil obtained by natural deep eutectic solvent (NADES): Effect of the extraction and recovery conditions. Journal of Food Science and Technology 58: 552-561. https://doi.org/10.1007/s13197-020-04567-3

              Sarmiento-Franco L, Montfort-Grajales S, Sandoval-Castro C (2022) La semilla del árbol Ramón (Brosimum alicastrum Swartz): alternativa alimentaria energética para animales de producción y seres humanos. Bioagrociencias 15(1): 19-28. http://dx.doi.org/10.56369/BAC.4214

              Shilpa V, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B (2023) Phytochemical properties, extraction, and pharmacological benefits of naringin: a review. Molecules 28(15): 5623. https://doi.org/10.3390/molecules28155623

              Suthar P, Kaushal M, Vaidya D, Thakur M, Chauhan P, Angmo D, Kashyap S, Negi N (2023) Deep eutectic solvents (DES): An update on the applications in food sectors. Journal of Agriculture and Food Research 14: 100678. https://doi.org/10.1016/j.jafr.2023.100678

              Trujillo-Nava IJ, Negrete-Hernández J, García-Arrazola R, Dávila Ú, Gimeno M (2023) Characterization of the ramon tree seed (Brosimum alicastrum Swartz.) as a potential food source. Agrociencia 57(7): 1-16. https://doi.org/10.47163/agrociencia.v57i7.2771

              Wang R, He R, Li Z, Li S, Li C, Wang L (2021) Tailor-made deep eutectic solvents-based green extraction of natural antioxidants from partridge leaf-tea (Mallotus furetianus L.). Separation and Purification Technology 275(15): 119159. https://doi.org/10.1016/j.seppur.2021.119159

              Zannou O, Pashazadeh H, Galanakis CM, Alamri AS, Koca I (2022) Carboxylic acid-based deep eutectic solvents combined with innovative extraction techniques for greener extraction of phenolic compounds from sumac (Rhus coriaria L.). Journal of Applied Research on Medicinal and Aromatic Plants 30: 100380. https://doi.org/10.1016/j.jarmap.2022.100380

              Zhang J, Zhang P, Liu T, Zhou L, Zhang L, Lin R, Yang G, Wang W, Li Y (2015) Solubility of naringin in ethanol and water mixtures from 283.15 to 318.15 K. Journal of Molecular Liquids 203: 98-103. https://doi.org/10.1016/j.molliq.2014.12.039

              Zheng B, Yuan Y, Xiang J, Jin W, Johnson JB, Li Z, Wang C, Luo D (2022) Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. LWT-Food Science and Technology 154: 112740. https://doi.org/10.1016/j.lwt.2021.112740

              Descargas

              Publicado

              2025-10-08

              Número

              Sección

              ARTÍCULOS CIENTÍFICOS

              Cómo citar

              Moo Huchin, V. M., Aguilar-Piloto, G., Sauri-Duch, E., Ramírez-Sucre, M. O., Canto-Pinto, J. C., & Ríos-Soberanis, C. R. (2025). Disolventes eutécticos profundos en la extracción de compuestos fenólicos en fruto entero de Brosimum alicastrum. Ecosistemas Y Recursos Agropecuarios, 12(3). https://doi.org/10.19136/era.a12n3.4513

              Artículos más leídos del mismo autor/a