Redistribución de la precipitación en un fragmento de bosque mixto en Durango, México
DOI:
https://doi.org/10.19136/era.a12nV.4578Palabras clave:
ecosistema forestal, escurrimiento cortical, flujo, intercepciónResumen
Con el propósito de conocer la redistribución de la precipitación en un fragmento de bosque mixto en el ejido Adolfo Ruiz Cortines, Durango, se desarrolló un experimento entre 2017 y 2020 en una parcela forestal de 2 500 m2, donde se cuantificó la intercepción y flujo de agua de las precipitaciones; incidente, directa y escurrimiento cortical, con el fin de evaluar la pérdida por efecto de la intercepción del dosel y caracterizar las propiedades químicas del agua (pH (CaCl2) y CE (μS cm-1)). Se registraron 77 eventos de lluvia con una lámina de precipitación incidente de 2 236.1 mm. La precipitación directa para Arbutus bicolor, Quercus rugosa y Q. sideroxyla fue 63, 82 y 76%, respectivamente. El escurrimiento cortical representó 0.08% en A. bicolor, 0.41% en Q. rugosa y 0.88% en Q. sideroxyla. La intercepción fue de 34%, 18% y 17% para A. bicolor, Q. rugosa y Q. sideroxyla, respectivamente. El análisis químico del agua en el pluviolavado presentó un valor medio de pH de 5.9 para la precipitación incidente, disminuyendo a 5.6 para la precipitación directa y de 6.0 para el escurrimiento cortical. La CE presentó valores de 32.4 en la precipitación incidente, 39.63 en la precipitación directa y 116.04 en el escurrimiento cortical. Comprender la intercepción del agua es clave para reconocer que, desde una perspectiva hidrológica en el manejo forestal, la presencia y distribución de especies vegetales son fundamentales para garantizar un flujo adecuado de agua en el ecosistema, aspecto clave para mantener los procesos biogeoquímicos activos.
Descargas
Referencias
Aguirre-Calderón OA (2015) Manejo Forestal en el Siglo XXI. Madera y Bosques 21: 17-28.
Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8): 1-55. https://doi.org/10.1890/ES15-00203.1
Asplund J, Ohlson M, Gauslaa Y (2015) Tree species shape the elemental composition in the lichen Hypogymnia physodes transplanted to pairs of spruce and beech trunks. Fungal Ecology 16: 1-5. https://doi.org/10.1016/j.funeco.2015.03.006
Badu M, Ghimire CP, Bruijnzeel LA, Nuberg I, Meyer WS (2022) Net precipitation, infiltration and overland flow production in three types of community-managed forest in the Mid-hills of East Central Nepal. trees. Forests and People 8: 100218. https://doi.org/10.1016/j.tfp.2022.100218
Béjar-Pulido SJ, Cantú-Silva I, Domínguez-Gómez TG, González-Rodríguez H, Monciváis-Mormolejo JG, Yáñez-Díaz MI, Luna-Robles EO (2018) Redistribución de la precipitación y aporte de nutrimentos en Pinus cooperi C.E. Blanco. Revista Mexicana de Ciencias Forestales 9(50): 94-120. https://doi.org/10.29298/rmcf.v9i50.237
Cantú-Silva I, González-Rodríguez H (2001) Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiology 21(12-13): 1009-1013. https://doi.org/10.1093/treephys/21.12-13.1009.
Cayuela E, Llorens P, Sánchez-Costa E, Levia DF, Latron J (2018) Effect of biotic and abiotic factors on inter-and intra-event variability in stemflow rates in oak and pine stands in a Mediterranean mountain area. Journal of Hydrology 560: 396-406. https://doi.org/10.1016/j.jhydrol.2018.03.050
Cederstrom CJ, Vivoni ER, Mascaro G, Svoma B (2024) Forest treatment effects on watershed responses under warming. Water Resources Research 60(6): e2023WR035627. https://doi.org/10.1029/2023WR035627
Chen S, Cao R, Yoshitake S, Ohtsuka T (2019) Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agricultural and Forest Meteorology 279: 107753. https://doi.org/10.1016/j.agrformet.2019.107753
Cronan CS, Reiners WA (1983) Canopy processing of acid precipitation by conifer and hardwood forest in New England. Oecologia 59(2): 216-223. https://doi.org/10.1007/BF00378839
Cruz-García F, Contreras-Balderas AJ, García-Salas JA, Gallardo-Reynoso JP (2017) Dieta de la nutria neotropical (Lontra longicaudis annectens) en Pueblo Nuevo, Durango, México. Revista Mexicana de Biodiversidad 88(3): 701-709. https://doi.org/10.1016/j.rmb.2017.07.001
Deng J, Yu Y, Shao J, Lu S, Liu F, Li Z, Shi X (2022) Rainfall interception using the revised Gash analytical model for Pinus sylvestris var. mongolica in a semi-humid region of NE China. Ecological Indicators 143: 109399. https://doi.org/10.1016/j.ecolind.2022.109399
Domínguez-Gómez TG, Hernández-González BN, González-Rodríguez H, Cantú-Silva I, Alanís-Rodríguez E, del Socorro-Alvarado M (2018) Estructura y composición de la vegetación en cuatro sitios de la Sierra Madre Occidental. Revista Mexicana de Ciencias Forestales 9(50): 9-34. https://doi.org/10.29298/rmcf.v9i50.227
Domínguez-Gómez TG, Vicente-Juan S, Velásquez-Ortiz EG, Córdova-Delgado ES, Cantú-Silva I, Yáñez-Díaz MI, Hernández FJ, Colín JG (2021) Intercepción de la precipitación en Pinus engelmannii Carr. y Quercus rugosa Née en el Ejido Adolfo Ruiz Cortines, Pueblo Nuevo, Durango. Revista e-CUCBA 9(17): 173-181. https://doi.org/10.32870/ecucba.vi17.225
Dong L, Han H, Kang F, Cheng X, Zhao J, Song X (2020) Rainfall partitioning in Chinese Pine (Pinus tabuliformis Carr.) stands at three different ages. Forests 11(2): 243. https://doi.org/10.3390/f11020243
Dunkerley D (2000) Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes 14(4): 669-678. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<669::AID-HYP965>3.0.CO;2-I
García-Ledezma YW, Cantú-Silva I, González-Rodríguez H, Yáñez-Díaz MI (2018) Pérdidas por intercepción de lluvia en el Matorral Espinoso Tamaulipeco bajo diferentes intensidades de raleo. Revista Mexicana de Ciencias Forestales 9(49): 148-164. https://doi.org/10.29298/rmcf.v9i49.178
Gauslaa Y, Goward T, Asplund J (2021) Canopy throughfall links canopy epiphytes to terrestrial vegetation in pristine conifer forests. Fungal Ecology 52: 101075. https://doi.org/10.1016/j.funeco.2021.101075.
Hernández-Manzanarez C, Domínguez-Gómez TG, Rodríguez-García E, Cantú-Silva I, Corral-Rivas JJ, Colín JG, González-Rodríguez H (2024) Intercepción de lluvia en bosques del ejido Adolfo Ruiz Cortines, Pueblo Nuevo, Durango. Revista Mexicana de Ciencias Forestales 15(83): 4-27. https://doi.org/10.29298/rmcf.v15i83.1439
Holder CD, Gibbes C (2017) Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrological Sciences Journal 62(2): 182-190. https://doi.org/10.1080/02626667.2016.1217414
IBM Corp (2016) IBM SPSS Statistics for Windows (Version 24.0) [Computer software]. Armonk, NY: IBM Corp. https://www.ibm.com/mx-es/products/spss-statistics. Fecha de consulta: 23 de Agosto de 2025
INEGI (2022) Aspectos geográficos de Durango. Compendio 2022. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/889463913276.pdf. Fecha de consulta: 15 de enero de 2025
Jian S, Zhang X, Li D, Wang D, Wu Z, Hu C (2018) The effects of stemflow on redistributing precipitation and infiltration around shrubs. Journal of Hydrology and Hydromechanics 66(1): 79-86. https://doi.org/10.1515/johh-2017-0043
Kermavnar J, Vilhar U (2017) Canopy precipitation interception in urban forest in relation to stand structure. Urban Ecosystems 20: 1373-1387. https://doi.org/10.1007/ s11252-017-0689-7
Levia DF, Keim RF, Carley-Moses DE, Frost EE (2011) Throughfall and stemflow in wooded ecosystem. In: Levia DF, Carley-Moses DE, Tanaka T (eds) Forest hydrology and biogeochemistry – synthesis of past research and future directions. Ecological Studies 216. Springer, Dordrecht. pp. 425-444. http://dx.doi.org/10.1007/978-94-007-1363-5_21
Levia Jr DF, Frost EE (2003) A review and evolution of stemflow literature in the hydrology and biogeochemical cycle of forested and agricultural ecosystems. Journal Hydrology 274(1-4): 1-29. https://doi.org/10.1016/S0022-1694(02)00399-2
Luna-Robles EO, Cantú-Silva I, González-Rodríguez H, Marmolejo-Monsiváis JG, Yáñez-Díaz MI, Béjar-Pulido SJ (2019) Nutrient input via gross rainfall, throughfall and stemflow in scrubland species in northeastern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(2): 235-251. https://doi.org/10.5154/r.rchscfa.2018.12.096
Magliano PN, Whitworth-Hulse JI, Baldi G (2019) Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. Journal of Hydrology 568: 638-645. https://doi.org/10.1016/j.jhydrol.2018.10.042
Mastachi-Loza CA, González-Sosa E, Becerril-Piña R, Braud I (2010) Pérdidas por intercepción en mezquite (Prosopis laevigata) y huizache (Acacia farnesiana) de la región semiárida del centro de México. Tecnología y Ciencias del Agua 1(1): 103-120.
Méndez-González J, Návar-Cháidez DJ, González-Ontiveros V (2008) Análisis de tendencias de precipitación (1920-2004) en México. Investigaciones Geográficas 65: 38-55.
Metzger JC, Filipzik J, Michalzik B, Hildebrandt A (2021) Stemflow infiltration hotspots create soil microsites near tree stems in an unmanaged mixed beech forest. Frontiers in Forests and Global Change 4: 701293. https://doi.org/10.3389/ffgc.2021.701293
Moraes-Frasson RP, Krajewski WF (2013) Rainfall interception by maize canopy: Development and application of a process-based model. Journal of Hydrology 489: 246-255. https://doi.org/10.1016/j.jhydrol.2013.03.019
ONU (2017). United Nations Strategic Plan for Forests 2017–2030. https://www.un.org/esa/forests/documents/un-strategic-plan-for-forests-2030/index.html. Fecha de consulta: 26 de noviembre de 2025
Ott L (1993) An introduction to statistical methods and data analysis. Boston, Massachusetts. Duxbury Press. pp. 730
Paula A, Brilhante FS, Tagliaferre C, Castro-Filho MN, Amaral-Batista WC, Barreto-García PAB (2020) Precipitação efetiva e interceptação pluviométrica em povoamento de Eucalyptus spp. em vitória da conquista – ba. Holos 5: 1-12. https://doi.org/10.15628/holos.2020.9896
Pinos J, Latron J, Levia DF, Llorens P (2021) Drivers of the circumferential variation of stemflow inputs on the boles of Pinus sylvestris L. (Scots pine). Ecohydrology 14: e2348. https://doi.org/10.1002/eco.2348
Pinos J, Flury M, Latron J, Llorens P (2023) Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers. Hydrology and Earth System Sciences 27(15): 2865-2881. https://doi.org/10.5194/hess-27-2865-2023
Shinzato ET, Tonello KC, Gasparoto EAG, Valente ROA (2011) Escoamento pelo tronco em diferentes povoamentos florestais na Floresta Nacional de Ipanema em Iperó, Brasil Stemflow in different forest fragments of Ipanema National Forest in Iperó, Brazil. Scientia Forestalis 39(92): 395-402.
Steel RGD, Torrie JH (1980) Principles and procedures of statistics. A biometrical approach. 2nd Edition, McGraw-Hill Book Company, New York. pp. 633.
Tamez-Ponce C, Cantú-Silva I, González-Rodríguez H, Yáñez-Díaz MI, Uvalle-Sauceda JI (2018) Pérdidas por intercepción en cuatro especies de matorral en el noreste de México. Revista Mexicana de Ciencias Forestales 9(49): 126-147. https://doi.org/10.29298/rmcf.v9i49.177
Tang C, Liu Y, Li Z, Guo L, Xu A, Zhao J (2021) Effectiveness of vegetation cover pattern on regulating soil erosion and runoff generation in red soil environment, southern China. Ecological Indicators 129: 107956. https://doi.org/10.1016/j.ecolind.2021.107956
Tonello KC, Gasparoto EAG, Shinzato ET, Valente ROA, Dias HC (2014) Precipitação efetiva em diferentes formações florestais na Floresta Nacional de Ipanema. Revista Árvore 38(2): 383-390. https://doi.org/10.1590/S0100-67622014000200020
Tucker A, Levia DF, Katul GG, Nanko K, Rossi LF (2020) A network model for stemflow solute transport. Applied Mathematical Modelling 88: 266-282. https://doi.org/10.1016/j.apm.2020.06.047
Van-Der-Ent R J, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resources Research 46(9): 1-12. https://doi.org/10.1029/2010WR009127
Van-Stan JT II, Allen ST (2020) What we know about stemflow’s infiltration area. Frontiers in Forests and Global Change 3: 61. https://doi.org/10.1029/2010WR009127
Wang W, Xu C, Lin TC, Yang Z, Liu X, Xiong D, Chen D, Chen G, Yang Y (2024) Forest structure regulates response of erosion-induced carbon loss to rainfall characteristics. Forests 15(7): 1269. https://doi.org/10.3390/f15071269
Whitworth-Hulse IJ, Magliano PN, Zeballos SR, Gurvich DE, Spalazzi F, Kowaljow E (2020) Advantages of rainfall partitioning by the global invader Ligustrum lucidum over the dominant native Lithraea molleoides in a dry forest. Agricultural and Forest Meteorology 290: 108013. https://doi.org/10.1016/j.agrformet.2020.108013
Wu Q, Yang R, Zeng H, Wang X, Chen G (2024) Responses of rainfall partitioning to water conditions in Chinese forests. Journal of Hydrology 637: 131410. https://doi.org/10.1016/j.jhydrol.2024.131410
Xiao Q, McPherson EG, Ustin SL, Grismer ME, Simpson JR (2000) Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrological Processes 14(4): 763-784. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<763::AID-HYP971>3.0.CO;2-7
Yang J, He Z, Feng J, Lin P, Du J, Guo L, Liu Y, Yan J (2023) Rainfall interception measurements and modeling in a semiarid evergreen spruce (Picea crassifolia) forest. Agricultural and Forest Meteorology 328: 109257. https://doi.org/10.1016/j.agrformet.2022.109257
Yang J, Wang A, Shen L, Dai G, Liu Y, Zhang Y, Fei W, Wu J (2024) The impact of canopy on nutrient fluxes through rainfall partitioning in a mixed broadleaf and coniferous forest. Forests 15(4): 623. https://doi.org/10.3390/f15040623
Zabret K, Rakovec J, Šraj M (2018) Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. Journal Hydrology 558: 29-41. https://doi.org/10.1016/j.jhydrol.2018.01.025
Zagyvai-Kiss KA, Kalicz P, Szilágyi J, Gribovszki Z (2019) On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agricultural and Forest Meteorology 278: 107656. https://doi.org/10.1016/j.agrformet.2019.107656
Zhang S, Yu J, Pan T, Gao X, Qiu Z, Hou L (2021). Difference between rainfall and throughfall chemistry for different forest stands in the Qinling Mountains, China. Hydrology Research 52(2): 523-535. https://doi.org/10.2166/nh.2021.015
Zore A, Bezak N, Šraj M (2022) The influence of rainfall interception on the erosive power of raindrops under the birch tree. Journal of Hydrology 613: 128478. https://doi.org/10.1016/j.jhydrol.2022.128478
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
![]()
This work is licensed under CC BY-NC-ND 4.0
