Tolerancia a la salinidad en el agua de riego en vinca (Catharathus roseus L.)

Autores/as

  • Elva Ixchel Landeros Ortíz Universidad Autónoma Agraria Antonio Narro image/svg+xml
    • Luis Alonso Valdez Aguilar Universidad Autónoma Agraria Antonio Narro image/svg+xml
      • Martín Cadena Zapata Universidad Autónoma Agraria Antonio Narro image/svg+xml
        • Irán Alia Tejacal Universidad Autónoma del Estado de Morelos image/svg+xml
          • Pedro Pérez Rodríguez Universidad Autónoma Agraria Antonio Narro image/svg+xml
            • Daniela Alvarado Camarillo Universidad Autónoma Agraria Antonio Narro image/svg+xml

              DOI:

              https://doi.org/10.19136/era.a13n1.4771

              Palabras clave:

              Estrés abiótico, Ornamentales, Calidad de agua para riego, Conductividad eléctrica

              Resumen

              La salinidad representa un reto para los agricultores, especialmente de plantas de ornato, debido a que la apariencia estética de las plantas determina su valor comercial. Vinca es una planta de interés ornamental pero también por su alto valor farmacéutico ya que produce valiosos compuestos con propiedades medicinales. En el presente estudió se evaluó el efecto de la salinidad por NaCl en la solución nutritiva en la acumulación de biomasa y su efecto en la capacidad antioxidante y estado nutrimental en dos cultivares, Polka dot y Valiant, de vinca. La salinidad por NaCl afectó el crecimiento y absorción de nutrimentos de Polka dot, siendo este cultivar más sensible al estrés salino. El cultivar Valiant demostró tolerancia a la salinidad incluso en la concentración de 35 mmol de NaCl ya que su crecimiento se mantuvo estable. La salinidad causó un desbalance nutrimental en Polka dot ya que la concentración foliar de Ca y K disminuyeron. Polka dot, a pesar de ser más sensible a la salinidad, produjo una mayor concentración flavonoides y tuvo una mayor actividad antioxidante. 

              Descargas

              Los datos de descarga aún no están disponibles.

              Referencias

              Acosta-Motos J, Díaz-Vivancos P, Álvarez S, Fernández N, Sánchez-Blanco MJ, Hernández JH. (2014) Mecanismos de tolerancia desarrollados por plantas de Myrtus communis L. y Eugenia myrtifolia L. a distintos niveles de salinidad. VI Jornadas Ibéricas de Horticultura Ornamental, Actas de Horticultura nº 68. 2016:130–135. ISBN 978846173029‐9

              Akyol TY, Yilmaz O, Uzilday B, Uzilday RÖ, Türkan I. (2020) Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany 44:1–13. https://doi.org/10.3906/bot-1911-15

              Arshad M, Saqib M, Akhtar J, Ashgar M. (2012) Effect of calcium on the salt tolerance of different wheat (Triticum aestivum L.) genotypes. Pakistan Journal of Agricultural Sciences 49: 497–504.

              Arvouet-Grand A, Vennat B, Pourrat A, Legret, PJJB. (1994) Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique 49:462-468.

              Barkla B J, Vera-Estrella R, Balderas Omar Pantoja E. (2007). Mecanismos de tolerancia a la salinidad en plantas. Biotecnología 14: 263–272.

              Benzie IF, Strain JJ. (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239: 70-76. https://doi.org/10.1006/abio.1996.0292

              Cabrera R, Solis A, Cuervo W. (2017) Tolerancia y manejo de salinidad, pH y alcalinidad en cultivos de flores. In: Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel. Editorial Universidad Nacional de Colombia, Bogotá, Colombia, 63-73.

              Cartmill AD, Valdez-Aguilar LA, Cartmill DL, Volder A, Alarcon A. (2013) Arbuscular mycorrhizal colonization does not alleviate sodium chloride-salinity stress in vinca [Catharanthus roseus (L.) G. Don]. Journal of Plant Nutrition 36: 164-178. https://doi.org/10.1080/01904167.2012.738275

              Cassaniti, C, Romano D, Flowers TJ. (2012) The response of ornamental plants to saline irrigation water. In: M. Garcia-Garizabal (ed.), Irrigation-water management, pollution and alternative strategies IntechOpen 131:158.

              Choi HS, Cai X, Gu M. (2018) Effects of salinity and drought stress on photosynthesis, growth, and development of ornamental plants. In: M. Pessarakli (ed.) Handbook of photosynthesis. CRC Press. pp. 651–661. https://doi.org/10.1201/9781315372136

              Coskun D, White PJ. (2023) Ion-uptake mechanisms of individual cells and roots: Short-distance transport. In: P. Marschner (ed.), Marschner’s mineral nutrition of plants. Academic Press. pp. 11–71. https://doi.org/10.1016/C2009-0-63043-9

              Cramer GR, Läuchli A, Polito VS. (1985) Displacement of Ca²⁺ by Na⁺ from the plasmalemma of root cells: A primary response to salt stress? Plant Physiology 79: 207–211. https://doi.org/10.1104/pp.79.1.207

              Dai JL., Duan LS, Dong HZ. (2014) Improved nutrient uptake enhances cotton growth and salinity tolerance in saline media. Journal of Plant Nutrition 37: 1269–1286. https://doi.org/10.1080/01904167.2014.881869

              De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, de Jesús Sánchez-Colín M, Muñoz-Muñiz OD. (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil 349: 367–376. https://doi.org/10.1007/s11104-011-0883-y

              Ding Y, Luo W, Xu G. (2006) Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Annals of Applied Biology 149: 111–123. https://doi.org/10.1111/j.1744-7348.2006.00080.x

              Dubey A, Tiwari D, Srivastava K, Prakash O, Kushwaha, R. (2020) A discussion on vinca plant. Journal of Pharmacognosia and Phytochemistry 9: 27-31.

              Ehsan N, Nawaz R, Ahmad S, Arshad M, Umar M, Mahmood R. (2016) Use of ornamental plant ‘Vinca’ (Vinca rosea L.) for remediation of lead-contaminated soil. Journal of Biodiversity and Environmental Sciences 8: 46-54.

              Escalona A, Salas-Sanjuán MC, Dos Santos C, Guzmán M. (2014) Efecto de aguas salinas sobre el crecimiento, concentración y relaciones de iones en Zinnia elegans y Tagetes erecta para su uso en jardinería urbana. ITEA Información Técnica Económica Agraria 110: 325–334. https://dx.doi.org/10.12706/itea.2014.020

              Garcia-Caparros P, Lao MT. (2018) The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae 240: 430–439. https://doi.org/10.1016/j.scienta.2018.06.022

              Guzman MR, Marques I. (2023) Effect of varied salinity on marigold flowers: Reduced size and quantity despite enhanced antioxidant activity. Agronomy 13: 3076. https://doi.org/10.3390/agronomy13123076

              Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, ... Fujita M. (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences 22: 9326. https://doi.org/10.3390/ijms22179326

              Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin F. (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum 33: 987–999. https://doi.org/10.1007/s11738-010-0631-6

              Jan R, Asaf S, Numan M, Lubna, Kim KM. (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11: 1–31. https://doi.org/10.3390/agronomy11050968

              Kausar A, Gull M. (2019) Influence of salinity stress on the uptake of magnesium, phosphorus, and yield of salt susceptible and tolerant sorghum cultivars (Sorghum bicolor L.). Journal of Applied Biology and Biotechnology 7: 53–58. https://doi.org/10.7324/JABB.2019.70310

              Khosh Kholgh Sima NA, Ahmad ST, Alitabar RA, Mottaghi A, Pessarakli M. (2012) Interactive effects of salinity and phosphorus nutrition on physiological responses of two barley species. Journal of Plant Nutrition 35: 1411–1428. https://doi.org/10.1080/01904167.2012.684132

              Marković M, Šoštarić J, Kojić A, Popović B, Bubalo A, Bošnjak D, Stanisavljević A. (2022) Zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) responses to salinity stress. Water 14: 1066. https://doi.org/10.3390/w14071066

              Mata Fernández I, Rodríguez-Gamiño ML, López-Blanco J, Vela-Correa G. (2014) Dinámica de la salinidad en los suelos. Revista Digital del Departamento El Hombre y su Ambiente, 1: 26–35.

              Negrão S, Schmöckel SM, Tester M. (2017) Evaluating physiological responses of plants to salinity stress. Annals of Botany 119: 1–11. https://doi.org/10.1093/aob/mcw191

              Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R. (2015) Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): The two faces of a versatile herb. Scientific World Journal 2015: 1–19. https://doi.org/10.1155/2015/982412

              Nieves-Cordones M, Al Shiblawi FR, Sentenac H. (2016) Roles and transport of sodium and potassium in plants. In: A Sigel, H Sigel, RKO Sigel (eds.), The alkali metal ions: Their role for life. Springer International Publishing. pp. 291–324. https://doi.org/10.1007/978-3-319-21756-7

              Orosco-Alcalá BE, Núñez-Palenius HG., Pérez-Moreno L, Valencia-Posadas M, Trejo-Téllez LI, Díaz-Serrano FR, Ruiz-Nieto JE, Abraham-Juárez MR. (2018) Tolerancia a salinidad en plantas cultivadas: Una visión agronómica. Agro Productividad 11: 51-57. https://doi.org/10.22004/ag.econ.352950

              Pérez K, Sandoval E. (2014) Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexagro JDC 4: 11–22. https://revista.jdc.edu.co/conexagro/article/view/206

              Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

              Rhodes R, Miles N, Hughes JC. (2018) Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research 223: 1–11. https://doi.org/10.1016/j.fcr.2018.01.001

              Singleton VL, Orthofer R, Lamuela-Raventós RM. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

              Strzepek K, Boehlert B. (2010) Competition for water for the food system. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2927–2940. https://doi.org/10.1098/rstb.2010.0152

              Tang RJ, Luan S. (2017) Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Current Opinion in Plant Biology 39: 97–105. https://doi.org/10.1016/j.pbi.2017.06.009

              Thakur M, Bhattacharya S, Khosla PK, Puri S. (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12: 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

              Velasco-Muñoz JF, Aznar-Sánchez JA, Belmonte-Ureña LJ, Román-Sánchez IM. (2018) Sustainable water use in agriculture: A review of worldwide research. Sustainability 10: 1084. https://doi.org/10.3390/su10041084

              Villarino GH, Mattson NS. (2011) Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology 21: 539–545. https://doi.org/ 10.21273/HORTTECH.21.5.539

              Vrabec R, Drašar P, Opletal L, Kosturko Š, Blunden G, Cahlíková L. (2025) Alkaloids from the genus Vinca L. (Apocynaceae): A comprehensive biological and structural review. Phytochemistry Reviews. https://doi.org/10.1007/s11101-025-10102-z

              Whitam FF, Blaydes DF, Devlin RM. (1971) Experiments in Plant Physiology. Van Nostrand Rteinhold Company. New York, USA. 245 pp.

              Xie K, Cakmak I, Wang S, Zhang F, Guo S. (2021) Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal 9: 249–256. https://doi.org/10.1016/j.cj.2020.10.005

              Xie W, Yang J, Gao S, Yao R, Wang X. (2022) The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils. Water 14: 2804. https://doi.org/10.3390/w14182804

              Yahyazadeh M, Meinen R, Hänsch R, Abouzeid S, Selmar D. (2018) Impact of drought and salt stress on the biosynthesis of alkaloids in Chelidonium majus L. Phytochemistry 152: 204–212. https://doi.org/10.1016/j.phytochem.2018.05.007

              Zaman M, Shahid SA, Heng L. (2018). Irrigation water quality. In: M Zaman, SA Shahid, L Heng (eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques Springer International Publishing. pp. 113–131. https://doi.org/10.1007/978-3-319-96190-3_5

              Publicado

              2026-01-29

              Número

              Sección

              ARTÍCULOS CIENTÍFICOS

              Cómo citar

              Landeros Ortíz, E. I., Valdez Aguilar, L. A., Cadena Zapata, M., Alia Tejacal, I., Pérez Rodríguez, P., & Alvarado Camarillo, D. (2026). Tolerancia a la salinidad en el agua de riego en vinca (Catharathus roseus L.). Ecosistemas Y Recursos Agropecuarios, 13(1). https://doi.org/10.19136/era.a13n1.4771

              Artículos más leídos del mismo autor/a