EXTRACTO DE Lysiloma acapulcensis EN LA DIGESTIBILIDAD Y FERMENTACIÓN RUMINAL DE UNA DIETA PARA OVINOS

Autores/as

  • Agustín Olmedo Juárez UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO
  • Rolando Rojo Rubio Centro Universitario UAEM, Temascaltepec. Universidad Autónoma del Estado de México.
  • Javier Arece García Estación Experimental de Pastos y Forrajes Indio Hatuey, Cuba
  • Abdel Zeidan Mohamed Salem Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México.
  • Ernesto Morales Almaraz Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México.
  • Benito Albarrán Portillo Centro Universitario UAEM Temascaltepec. Universidad Autónoma del Estado de México.
  • Héctor Aarón Lee Rangel Universidad Autónoma de San Luis Potosí
  • José Fernando Vázquez Armijo Centro Universitario UAEM Temascaltepec. Universidad Autónoma del Estado de México.

DOI:

https://doi.org/10.19136/era.a2n5.124

Palabras clave:

Digestibilidad, nutrientes, cinética de fermentación ruminal, taninos condensados libres, ovinos

Resumen

El objetivo fue evaluar in vitro e in vivo el valor nutricional de una dieta basal para ovinos adicionada con diferentes niveles de taninos condensados libres (TCL) de Lysiloma acapulcensis (T0=0; T1= 2.5; T2 = 5.0 y T3=7.5 gd-1). En el experimento in vitro se determinó la cinética de degradación del sustrato mediante la técnica de producción de gas y en la parte in vivo se utilizaron cuatro ovinos canulados en rumen (60 ± 3 kg de peso corporal) para conocer algunas variables de la fermentación ruminal. Los datos se analizaron mediante un diseño completamente al azar y cuadrado latino, respectivamente. En el ensayo in vitro, se observaron diferencias significativas (p< 0.05), en los parámetros de fermentación ruminal: (producción de gas total, hasta alcanzar la asíntota (b) y tasa fraccional de producción gas ( c). . La síntesis de ácidos grasos de cadena corta (AGCC) y la energía metabolizable (EM), se redujo en los tratamientos que contenían TCL. La digestibilidad aparente de la proteína cruda (DAPC), fue mayor (p < 0.05) en el T2 (790 g kg-1 de MS). Las concentraciones de nitrógeno amoniacal (N-NH3) fueron menores (p < 0.05), en los tratamientos T3 y T0, en las horas 0, 4, 20 y 24 (9.5, 4.67, 6.91 y 6.89 mgdL-1) respectivamente. La población de protozoarios fue mayor (p < 0.5) en los animales que recibieron los tratamientos con TCL (0, 4, 8 y 12 h post-alimentación).Se concluye que la adición de 5.0 g TCL mejoró la DAPC, aumentan los niveles de N-NH3 (T1, T2 Y T3), disminuyen los AGCC y la EM, pero estimula la población de protozoarios.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Agustín Olmedo Juárez, UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO

Alumno Doctorado. Universidad Autónoma del Estado de México.

Rolando Rojo Rubio, Centro Universitario UAEM, Temascaltepec. Universidad Autónoma del Estado de México.

Profesor Investigador de Tiempo Completo

Javier Arece García, Estación Experimental de Pastos y Forrajes Indio Hatuey, Cuba

Profesor Investigador de Tiempo Completo

Abdel Zeidan Mohamed Salem, Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México.

Profesor Investigador de Tiempo Completo

Ernesto Morales Almaraz, Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México.

Profesor Investigador de Tiempo Completo.

Benito Albarrán Portillo, Centro Universitario UAEM Temascaltepec. Universidad Autónoma del Estado de México.

Profesor Investigador de Tiempo Completo

Héctor Aarón Lee Rangel, Universidad Autónoma de San Luis Potosí

Profesor Investigador

José Fernando Vázquez Armijo, Centro Universitario UAEM Temascaltepec. Universidad Autónoma del Estado de México.

Profesor Investigador de Tiempo Completo

Citas

Ademola IO, Eloff JN (2011) Anthelminthic activity of acetone extract and fractions of Veronia amygdalina against Haemonchus contortus eggs and larvae. Tropical Animal Health and Production 43: 521-527.

AdemolaIO, Fagbemi BO, Idowu SO (2005) Anthelmintic activity of extracts of Sapondiasmombinagainst gastrointestinal nematodes of sheep: Studies in vitro and in vivo. Tropical Animal Health and Production 37: 223-235.

Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA, Aguilar-Caballero AJ, Hoste H (2008) In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Veterinary Parasitolology153: 313-319.

Arece J, Mahieu M, Archimède H, Aumont G, Fernández M, González E, et al. (2004) Comparative efficacy of six anthelmintics for the control of nematodes in sheep in Matanzas, Cuba. Small Ruminant Research 5 (1-2): 61-67.

Asquith TN, Butler LG (1989) Use of dye-labeled protein as spectrophotometric assay for protein precipitans such as tannin. Journal of Chemistry Ecology 11: 1535–1544.

Assis LM, Bevilaqua CML, Morais SM, Vieira LS, Costa CTC, Souza JAL (2003) Ovicidal and larvicidal activity in vitro of Spigeliaanthelmia Linn. extracts on Haemonchus contortus. Veterinary Parasitology117: 43-49.

AOAC (Association of Official Analytical Chemists)(1997) Official Methods of Analysis, 16th edition. AOAC, Arlington, VA, USA.

Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Veterinary Parasitology 99: 205–219.

Brunet S, Hoste H (2006) Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. Journal Agricultural Food Chemistry 54: 7481-7487.

Brunet S, Aufrere J, El Babili F, Fouraste I, Hoste H (2007) The kinetics of exsheatment of infective nematode larvae is disturbed in the presence of a tannin-rich plant extract. Parásitology 134: 1253-1262.

Busquet M, Calsamiglia S, Ferret A,Kamel C (2005) Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Animal Feed Science and Technology 124: 597–613.

Camacho LM, Rojo R, Salem AZM, Provenza FD, Mendoza GD, Avilés F, et al. (2010) Effect of season on chemical composition and in situ degradability in cows and in adapted and unadapted goats of three Mexican browse species. Animal Feed Science and Technology 155: 206-212.

Cardozo PW, Calsamiglia S, Ferret A, Kamel C (2004) Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science 82: 3230–3236.

Clausen TP, ProvenzaFD, Burrit EA, ReichardtPB, Bryant. JP (1990) Ecological implications of condensed tannin structure: a case study. Journal of Chemistry and Ecology 16: 2381-2392.

Food and Agriculture Organization (2000) www.fao.org.

France J, Dijkstra J, Dhanoa MS, Lopez S, Bannink A (2000) Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83: 143–150.

García ME (1986) Apuntes de climatología,5a Edición. Enriqueta García de Miranda, México,D.F.155 p.

Getachew G, Makkar HPS, Becker K (2002) Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. Journal of Agricultural Science 139: 341–352.

Gea A, Stringano E, Brown RH, Mueller-Harvey I (2011) In situ analysis and structural elucidation of sainfoin (Onobrychis viccifolia) tannins for high throughput germplasm screening. Journal Agricultural Food Chemistry 59: 405-503.

Githiori JB, Athanasiadou S, Thamsborg SM (2006) Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Veterinary Parasitology 139: 308–320.

Hedqvist H, Mueller-Harvey I, Reed JD, Krueger CG,

Murphy M (2000) Characterization of tannins and in vitro protein digestibility of several Lotus corniculatus varieties. Animal Feed Science and Technology 87: 41–56.

Hervás G, Frutos P, Giráldez FJ, Mantecón AR, Álvarez Del Pino MC (2003) Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Animal Feed Science and Technology 109: 65-78.

Hess HD, Monsalve L M, Lascano CE, Carulla JE, Díaz TE, Kreuzer M (2003) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Australian Journal of Agricultural Research 54: 703–713.

Hess HD, Kreuzer M, Diaz TE, Lascano CE, Carulla JE, Soliva CR, et al.(2003) Saponins rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology 109: 79–94.

Hagerman AE, ButlerL G (1991) Tannins and lignins. In: G.A. Rosenthal and M. R. Berenbaum (Ed.) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol. I: The Chemical Participants. Academic Press, New York. pp: 355-388.

Hubert J, Kerboeuf D (1992) A micro larval development assay for the detection of anthelmintic resistance in sheep nematodes. Veterinary Record 130: 442-446.

López J, Tejada I, Vázquez C, De Dios G, Shimada A (2004) Condensed tannins in humid tropical fodder crops and their in vitro biological activity. Journal of the Science of Food and Agriculture 84: 295–299.

McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA (2006) Nutrición animal. 6th Edición. Prentice Hall. Zaragoza, España. 587 p.

McCollough H, (1967) The determination of ammonia in whole blood: a direct colorimetric method. Clinical Chemistry Acta 17: 297-304.

McSweeney CS, Palmer B, McNeill DM, Krause DO (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science Technology 91: 83–93.

Makkar HPS, Blümmel M, BeckerK (1995) In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. Journal of the Science of Food and Agriculture 69: 481-493.

Meagher LP, Lane G, Sivakumaran S, Tavendale MH, Fraser K (2004) Characterization of condensed tannins from Lotus species by thiolytic degradation and electrospray mass spectrometry. Animal Feed Science and Technology 117: 151-163.

Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analyses and in vitro gas production using rumen fluid. Animal Research and Development 28: 7–55.

Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperateforages: a review. Animal Feed Science and Technology 106: 3–19.

Min BR, Attwood GT, McNabb WC, Molan AL, Barry TN (2005) The effect of condensed tannins from Lotus corniculatuson the proteolytic activities and growth of rumen bacteria. Animal Feed Science and Technology I21: 45–58.

Molan AL, Meagher LP, Spencer PA, Sivakumaran S (2003) Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. International Journal of Parasitology 33: 1691-1698.

Molan AL, Alexander RA, Brookes IM, McNabb WC (2000) Effect of an extract from sulla (Hedysarum coronarium) containing tannins of the migration of three sheep gastrointestinal nematodes in vitro. Process New Zealand Society Animal 60: 21-25.

Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. Journal Science Food Agricultural 86: 2010-2037.

Novobilský A, Muller-Harvey I, Milan ST (2011) Condensed tannins act against cattle nematodes. Veterinary Parasitology 182: 213-220.

NRC (2007) Nutrient Requirements of Small Ruminants.Sheep, Goats, Cervids, and New World Camelids. Animal Nutrition Series. The National Academy Press. Washington, DC, USA. 362 p.

Olmedo JA, Rojo R, Arece J, Salem AZM, Morales E, Aviles F, et al. (2013) In vitro anthelmintic activity of crude aqueous extracts of Pithecellobium dulce and Lysiloma acapulcensis against gastrointestinal nematodes in small ruminants. Journal of Animal Science 91: 53-54.

Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delhpinidin. Phytochemistry 25: 223-230.

Provenza FD, Burritt EA, Clausen TP, Bryant JP, Reichardt PB, Distel RA (1990) Conditioned flavor aversion: a mechanism for goats to avoid condensed tannins in black brush. Am. Nat. 136: 810-828.

Salem AZM, Salem MZM, El-Adawy MM, Robinson PH (2006) Nutritive evaluations of some browse tree foliages during the dry season: secondary compounds, feed intake and in vivo digestibility in sheep and goat. Animal Feed Science and Technology 127: 251-267.

SAS Institute (2006) SAS User´s Guide: Statistics. Ver 9.0. SAS Institute. Cary, N.C. USA. 956 p.

Steel RGD, Torrie JH (1980) Bioestadística: Principios y procedimientos. McGraw-Hill. México. 181-184 pp.

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB,

France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185–197.

Thompson DP, Geary, TG (1995) The structure and function of helminthic surface. In: J. J. Marr and M. Muller, (eds), Biochemistry and Molecular Biology of Parasites, Academic Press, New York. 203-232 pp.

Van Soest PJ (1982) Nutritional Ecology of the Ruminant Comstock, Cornell Univ. Press, New York, NY.

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch carbohydrates in relation to animal nutrition. Journal of Dairy Science 74: 583- 597.

Wina E, Muetzel S, Hoffmann E, Makkar HPS, Becker K (2005) Saponins containing methanol extract of Sapindusrarakaffect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology 121: 159–174.

Waghorn GC, (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—progress and challenges. Animal Feed Science and Technology 147: 116–139.

Wolstenholme AJ, Fairweather I, Prichard R, Von Samson Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends in Parasitology 20: 469–476.

Descargas

Publicado

2015-03-10

Cómo citar

Olmedo Juárez, A., Rojo Rubio, R., Arece García, J., Salem, A. Z. M., Morales Almaraz, E., Albarrán Portillo, B., Lee Rangel, H. A., & Vázquez Armijo, J. F. (2015). EXTRACTO DE Lysiloma acapulcensis EN LA DIGESTIBILIDAD Y FERMENTACIÓN RUMINAL DE UNA DIETA PARA OVINOS. Ecosistemas Y Recursos Agropecuarios, 2(5), 173–182. https://doi.org/10.19136/era.a2n5.124

Número

Sección

ARTÍCULOS CIENTÍFICOS

Artículos más leídos del mismo autor/a