Termorregulación, termotolerancia y tasa metabólica de adultos de Macrobrachium tenellum
DOI:
https://doi.org/10.19136/era.a5n14.1426Resumen
El objetivo fue determinar la termorregulación, termotolerancia (TCMax y TCMin) y consumo de oxígeno de adultos de Macrobrachium tenellum (21.3 g ± 1.23 g), para lo cual se evaluaron cinco temperaturas de aclimatación durante 30 d. La preferencia térmica fue de 26.5 °C, la temperatura de aclimatación no tuvo efecto signicativo en las preferencias térmicas. La TCMin y TCMax para cada temperatura de aclimatación fue de 10.2 °C, 11.01 °C, 11.9 °C, 12.9 °C y 13.7 °C, y 36.3 °C, 37.5 °C, 39.25 °C, 40.2 °C y 41.5 °C, con diferencias signicativas entre ellas, mientras que el polígono térmico fue de 331 °C2 , característica de especies euritérmicas. La tasa de consumo de oxígeno incrementó de 91.4 a 130.7 mg O2 kg-1 h-1 con la temperatura de aclimatación, lo que explica la preferencia de temperaturas bajas, su patrón de distribución y su óptimo térmico en etapa adulta.
Descargas
Referencias
Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27: 249-268.
Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83: 339-55.
Cabrera PJ (1983) Carácter práctico para diferenciación de sexos en Macrobrachium tenellum (Crustacea: Decapoda: Natatia). Revista de Biología Tropical 31: 159-160.
Cerezo VJ, Martínez LFJ, García GB (2006) Oxygen consumption and ventilatory frequency responses to gradual hypoxia in common dentex (Dentex dentex): Basis for suitable oxygen level estimations. Aquaculture 256: 542-551.
Chown SL (2001) Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology 47: 649-660.
Claussen DL (1977) Thermal acclimation in ambystomatid salamanders. Comparative Biochemistry and Physiology Part A: Physiology 58A: 333-340.
Díaz F, Bückle LF (1993) Thermoregulatory behaviour of Macrobrachium rosenbergii (Crustacea, Palaemonidae). Tropical Ecology 43: 199-203.
Díaz F, Sierra E, Buckle LF, Garrido A (1998) Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda:Palemonidae). Journal of Thermal Biology 23: 381-385.
Díaz F, Sierra E, Re AD, Rodríguez L (2002) Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). Journal of Thermal Biology 27: 423-428.
Diaz F, Re AD, Sierra E, Amador G (2004) Behavioural thermoregulation and critical limits applied to the culture of red claw Cherax quadricarinatus (von Martens). Freshwater Craysh 14: 90-98.
Díaz F, Re AD, Medina Z, Valdez G, Valenzuela F (2006) Thermal preference and tolerance of green abalone Haliotis fulgens (Philippi, 1845) and pink abalone Haliotis corrugata (Gray, 1828). Aquaculture Research 37: 877-884.
Díaz F, Re AD, González RA, Sánchez LN, Leyva G, Valenzuela F (2007) Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacepéde) acclimated to dierent temperatures. Aquaculture Research 38: 1387-1394.
Díaz F, Re AD, Salas A, Galindo-Sanchez CE, González M, Sánchez A, et al. (2015) Behavioral thermoregulation and critical thermal limits of giant keyhole limpet Megathura crenulata (Sowerby 1825) (Mollusca; Vetigastropoda). Journal of Thermal Biology 54:133-138.
Eme J, Bennett WA (2009) Critical thermal tolerance polygons of tropical marine shes from Sulawesi, Indonesia. Journal of Thermal Biology 34: 220-225.
Flores RR, Lazareno MM, Espinoza Ch, Basto RE, Vega VF (2012) Temperatura óptima y preferencia térmica del camarón de río Macrobrachium tenellum en la costa tropical del Pacico Mexicano. Boletim do Instituto de Pesca 38: 121-130.
Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance dened by cardiac and ventilatory performance in spider crab, Maja squinado. American journal of physiology. Regulatory, integrative and comparative physiology 279: 1531-1538.
Giattina JD, Garton RR (1982) Graphical model of thermoregulatory behavior by shes with a new measure of eurythermality. Canadian Journal of Fisheries and Aquatic Sciences 39: 524-528.
Giomi F, Pörtner HO (2013) A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Aquatic-physiology 4: 1-13.
González RA, Diaz F, Licea A, Re AD, Sanchez LN, Garcia-Esquivel Z (2010) Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to dierent acclimation temperatures. Journal of Thermal Biology 35: 218-224.
Healy TM, Schulte PM (2003) Thermal Acclimation Is Not Necessary to Maintain a Wide Thermal Breadth of Aerobic Scope in the Common Killish (Fundulus heteroclitus). Physiological and Biochemical Zoology 85:107-119.
Hernández M, Bückle LF, Diaz F. (1995) Preferred temperature of Macrobrachium tenellum (Crustacea: Palaemonidae). Rivista Italiana di Acquacoltura 30: 93-96.
Hernández M, Buckle LF, Palacios E, Baron B (2006) Preferential behavior of white shrimp Litopenaeus vannamei (Boone 1931) by progressive temperature- salinity simultaneus interaction. Journal of Thermal Biology 31: 565-572.
Johnston IA, Bennett AF (1996) Animals and temperature: Phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge. Englad. 436p.
Kir M, Kumlu M (2008) Eect of temperature and salinity on low thermal tolerance of Penaeus semisulcatus (Decapoda: Penaeidae). Aquaculture Research 39: 1101-1106.
Kumlu M, Turkmen S, Kumlu M (2010) Thermal tolerance of Litopenaeus vannamei (Crustacea: Penaeidae) acclimated to four temperatures. Journal of Thermal Biology 35: 305-308.
Lagerspetz K, Vainio L (2006) Thermal behavior of crustaceans. Biological Reviews 81: 237-258.
Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. Journal of Sea Research 70:32-41.
Manush SM, Pal AK, Chatterjee N, Das T, Mukherjee SC (2004) Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. Journal of Thermal Biology 29: 15-19.
Mora C, Maya M (2006) Eect of the rate of temperature increase of the dynamic method on the heat tolerance of shes. Journal of Thermal Biology 31: 337-341.
Niu C, Lee D, Goshima S, Nakao S (2003) Eects of temperature on food consumption, growth and oxygen consumption of the freshwater prawn Macrobrachium rosenbergii De Man, 1879. Aquaculture Research 34: 501-506.
Noyola RJ, Mascaró M, Díaz F, Re AD, Sánchez-Zamora A, Caamal-Monsreal C. et al. (2016) Thermal biology of prey (Melongena corona bispinosa, Strombus pugilis, Callinectes similis, Libinia dubia ) and predators (Ocyurus chrisurus, Centropomus undecimalis ) of Octopus maya from the Yucatan Peninsula. Journal of Thermal Biology 53: 151-161.
Pérez E, Diaz F, Espina S (2003) Thermoregulatory behavior and rritical thermal limits of the angelsh Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). Journal of Thermal Biology 28: 531-537.
Ponce-Palafox JT, Uriostegui FL, Benítez-Mandujano MA, Castillo-Vargasmachuca, Benítez-Valles J, Gómez-Gurrola, et al. (2013) Comparative growth performance of male and female fresh- water prawn Macrobrachium tenellum (Decapoda: Palaemonidae) cultured in tropical earthen ponds. International Journal of Fisheries and Aquaculture 5:26-28.
Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology A 132:739-761.
Portner HO, Knust R (2007) Climate change aects marine shes through the oxygen limitation of thermal tolerance. Science 315: 95-97.
Portner HO, Farrell AP (2008) Physiology and climate change. Science 322: 690-692.
Re AD, Díaz F, Sierra E, Rodríguez J, Pérez E (2005) Eect of salinity and temperature on thermal tolerance of Brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea, Penaeidae). Journal of Thermal Biology 30: 618-622.
Re AD, Diaz F, Valdez G (2006) Eect of salinity on the thermoregulatory behavior of juvenile blue shrimp Litopenaeus stylirostris Stimpson. Journal of Thermal Biology 31: 506-513.
Reiser S, Herrmann JP, Temming A (2014) Thermal preference of the common brown shrimp (Crangon crangon L.) determined by the acute and gravitational method. Journal of Experimental Marine Biology and Ecology 461: 250-256.
Reyes I, Díaz F, Re AD, Pérez J (2011) Behavioral thermoregulation, temperature tolerance and oxygen consumtion in the Mexican bullseye puer sh, Sphoeroides annulatus Jenyns (1842), acclimated to dierent temperatures. Journal of Thermal Biology 36: 200-205.
Reynolds WW, Casterlin ME (1979) Behavioral thermoregulation and the nal preferendum paradigm American Zoologist 19: 211-224.
Schulte PM (2015) The eects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. The Journal of Experimental Biology 218: 1856-1866.
Stern S, Borut A, Cohen D (1984) The eect of salinity and ion composition on oxygen consumption and nitrogen excretion of Macrobrachium rosenbergii (De Man). Comparative Biochemistry and Physiology 79: 271-27.
Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proceedings of the Royal Society 274: 2935-2942.
Valdez G, Díaz F, Sierra E (2008) Eect of salinity on physiological energetics of white shrimp Litopenaeus vannamei, Boone. Hidrobiológica 18:105-115.
Van-Emden H (2008) Statistics for terried biologists. Blackwell Scientic Publications, Cambridge, Massa-chusetts. 343p.
Vinagre C, Leal I, Mendonca V, Madeira D, Narciso L, Dinis M, et al. (2016) Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecological Indicators 62: 317-327.
Wedemeyer GR, Meyer FP, Smith L (1999) Environmental stress and fish diseases. Narendra Publishing House. Delhi, India. 107p.
Zheng J, Nakatsuji T, Roer RD, Watson RD (2008) Studies of a receptor guanylyl cyclase cloned from Y-organs of the blue crab (Callinectes sapidus), and its possible functional link to ecdysteroidogenesis.
General and Comparative Endocrinology 155: 780-788.
Publicado
Número
Sección
Licencia
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia internacional Creative Commons Reconocimiento-No comercial-Compartir igual 4.0 .de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Este trabajo está sujeto a una licencia internacional Creative Commons Reconocimiento-No comercial-Compartir igual 4.0 .