Nivel de proteína y energía en la fermentación in vitro de dietas para borregos

Autores/as

  • Asael Edem De la Rosa- Zariñana UNIVERSIDAD AUTÓNOMA CHAPINGO
  • Luis Alberto Miranda-Romero Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo.
  • Pedro Arturo Martínez-Hernández Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo.
  • Luis Manuel Vargas-Villamil Posgrado en Ciencias Agrícolas en el Trópico, Colegio de Posgraduados campus Tabasco.
  • Amr Elmasry Botany Department, Faculty of Agriculture, Menoufia University.

DOI:

https://doi.org/10.19136/era.a10n2.3545

Palabras clave:

digestibilidad, engorda intensiva, fracciones fermentables, impacto ambiental, técnica de producción de gas

Resumen

La eficiencia de utilización ruminal del alimento, entre otras razones, depende del nivel de energía y proteína contenida en el mismo. Con el objetivo de determinar el efecto del nivel de energía y proteína del alimento en la digestibilidad (DIVMS72h),el volumen (Vm), tasa (S) y fase Lag (L) de la producción de gas; las fracciones de fermentación rápida (FFR), media (FFM) y lenta (FFL); la producción de metano, el indicador del potencial de calentamiento global (IPCG) e índice de impacto ambiental (IIA), se formularon cinco dietas de acuerdo con el nivel de energía metabolizable (EM, Mcal kg−1 MS) y proteína cruda (PC, %); BB; 2.6 y 13.8, MM; 2.8 y 16, AA; 3.0 y 17.2, AB; 2.8 y 14.5, BA; 2.6 y 17.2 en EM y PC. La S fue superior (p < 0.05) en las dietas AA y AB, el Vm fue menor (p < 0.05) para la dieta BA. La dieta AA tuvo las mayores (p < 0.05) FFR y FFM. Las dietas BA y BB tuvieron la mayor (p < 0.05) FFL, pero menor DIVMS72h (p < 0.05). Respecto al impacto ambiental, la dieta BB produjo la mayor proporción (p < 0.05) de CH4, IPCG e IIA. Se concluye que las dietas con mayor contenido de carbohidratos no estructurales tienen mejor cinética fermentativa y digestibilidades, también generan menores proporciones de CH4, IPCG y IIA, estos últimos pueden usarse como indicadores del impacto ambiental ya que consideran el CO2 y CH4 producidos por los consorcios microbianos del rumen. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Alberto Miranda-Romero, Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo.

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo. Km. 38.5 Carretera México – Texcoco Chapingo, Texcoco, Estado de México, 56230.

Pedro Arturo Martínez-Hernández, Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo.

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo. Km. 38.5 Carretera México – Texcoco Chapingo, Texcoco, Estado de México, 56230

Amr Elmasry, Botany Department, Faculty of Agriculture, Menoufia University.

Botany Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt

Citas

AOAC (1990) Official Methods of Analysis. 15th Edition. Association of Official Agricultural Chemists. Washington DC, USA. 2000p.

Aragadvay-Yungán R, Rodríguez MB, Basantes-Basantes E, Cando ÁC (2022) Valor nutricional, producción de gas in vitro y degradación ruminal in situ de ensilaje de maíz enriquecido con Saccharomyces cerevisiae. Revista de Investigaciones Veterinarias del Perú 33: e20890-e20890. DOI: 10.15381/rivep.v33i1.20890.

Arjmand M, Kiani A, Azizi A, Fadayifar A, Azarfar A, Ponnampalam EN (2022) Effects of dietary concentrate level and feeding length on nutrient digestibility, rumen hydrolytic enzymes activity, intermediary metabolites, and feeding behavior in growing fat-tailed lambs: Iranian feedlot system. Small Ruminant Research 217:106832. DOI: 10.1016/j.smallrumres.2022.106832.

Bastida-García J, González-Ronquillo M, Dominguez-Vara I, Romero-Bernal J, Castelan-Ortega O (2011) Effect of field pea (Pisum sativum L.) level on intake, digestion, ruminal fermentation and in vitro gas production in sheep fed maintenance diets. Animal Science Journal 82: 654-662.

Beckett L, Gleason CB, Bedford A, Liebe D, Yohe TT, Hall MB, White RR (2021) Rumen volatile fatty acid molar proportions, rumen epithelial gene expression, and blood metabolite concentration responses to ruminally degradable starch and fiber supplies. Journal of Dairy Science 104: 8857-8869.

Bernal-Barragán H, Perrusquía-Tejeida VM, Vásquez-Aguilar NC, González-Rodríguez H (2022) Determinación de la producción de gas in vitro, contenido de nutrientes y energía metabolizable de forrajes y suplementos para ovinos y caprinos. Ciencia UANL 115: 40-47.

Berra G, Finster L, Valtorta SE (2009) Una técnica sencilla para la medición de emisiones de metano entérico en vaca. Revista FAVE-Ciencias Veterinarias 8: 49-56.

Bueno IC, Cabral FSL, Gobbo SP, Louvandini H, Vitti DM, Abdalla AL (2005) Influence of inoculum source in a gas production method. Animal Feed Science and Technology 123: 95-105.

Calabro S, López S, Piccolo V, Dijkstra J, Dhanoa MS, France J (2005) Comparative analysis of gas production profiles obtained with buffalo and sheep ruminal fluid as the source of inoculum. Animal Feed Science and Technology 123: 51-65.

Castillo-López E, Domínguez-Ordóñez MG (2019) Factores que afectan la composición microbiana ruminal y métodos para determinar el rendimiento de la proteína microbiana. Revista Mexicana de Ciencias Pecuarias 10: 120-148.

Chiriguay BWG (2023) Modelo matemático de optimización alimenticia para la eficiencia productiva del ganado vacuno en el Ecuador. Ciencia Latina Revista Científica Multidisciplinar 7: 9162-9177.

Cui K, Qi M, Wang S, Diao Q, Zhang N (2019) Dietary energy and protein levels influenced the growth perfor- mance, ruminal morphology and fermentation and microbial diversity of lambs. Scientific Reports 9: 16612. DOI: 10.1038/s41598-019-53279-y.

Culma NYM, de Jesús RG, Suárez NEA, Herrera FV (2017) Alternativas nutricionales para disminuir emisiones de gas metano por bovinos y su efecto en el calentamiento global. Ciencias Agropecuarias 3: 8-17.

De Azevedo EB, Savian JV, do Amaral GA, de David DB, Gere JI, Kohmann MM, de Faccio CPC (2021) Feed intake, methane yield, and efficiency of utilization of energy and nitrogen by sheep fed tropical grasses. Tropical Animal Health and Production 53(5): 452. DOI: 10.1007/s11250-021-02928-4.

Gurrola AG, Hernández MP, Duran RR, Ramírez JCR, Gurrola JAG, Mormita MG, García LS (2014) Efecto de la inclusión del fruto de Guazuma ulmifolia como sustituto de maíz en la dieta sobre el comportamiento productivo y rendimiento en canal de ovinos Pelibuey. Tropical and Subtropical Agroecosystems 17: 215- 222.

Gutiérrez-Fidencio M, Crosby-Galván MM, Ramírez-Bribiesca JE, Sánchez-Villarreal A, Hérnandez-Rodríguez M, López-Rosas I, Ramírez-Mella M (2023) Efecto del rizoma de Zingiber officinale sobre la fermentación ruminal y producción de metano in vitro. Ecosistemas y Recursos Agropecuarios, 10(1): e3570. DOI: 10.19136/era.a10n1.3570.

Harahap RP, Suharti S, Ridla M, Laconi EB, Nahrowi N, Irawan A, Jayanegara A (2022) Meta-analysis of dietary chitosan effects on performance, nutrient utilization, and product characteristics of ruminants. Animal Science Journal 93(1): e13676. DOI: 10.1111/asj.13676.

Hernández-de los Santos AD, Duran-Zamora EM, Luna-Palomera C, López-Durán S, Vázquez-Martínez IM, Muñoz-Osorio GA, Chay-Canul AJ (2022) Crecimiento post-destete y rentabilidad de corderos Pelibuey suplementados con tres diferentes concentrados comerciales en Tabasco, México. Ecosistemas y Recursos Agropecuarios 9(2): e3148. DOI: 10.19136/era.a9n2.3148.

Huertas-Molina OF, Londoño-Vásquez D, Olivera-Angel M (2020) Hipercetonemia: bioquímica de la producción de ácidos grasos volátiles y su metabolismo hepático, Revista UDCA Actualidad & Divulgación Científica 23(1): e1304. DOI: 10.31910/rudca.v23.n1.2020.1304.

IPCC (2006) Guidelines for national greenhouse gas inventories. Agriculture, forestry and other land use. Inter- governmental Panel on Climate Change. 87p. https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol4. html. Fecha de consulta: 31 de julio de 2022.

Jiménez-Santiago A, Jiménez-Ferrer G, Alayón-Gamboa A, Pérez-Luna EDJ, Piñeiro-Vázquez AT, Albores-Moreno S, Castro-Chan R (2019) Fermentación ruminal y producción de metano usando la técnica de gas in vitro en forrajes de un sistema silvopastoril de ovinos de Chiapas, México. Revista Mexicana de Ciencias Pecuarias 10: 298-314.

Karabulut A, Canbolat O, Kalkan H, Gurbuzol F, Sucu E, Filya I (2007) Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Australasian Journal of Animal Sciences 20: 517-522.

Kazemi-Bonchenari M, Khanaki H, Jafari A, Eghbali M, Poorhamdollah M, Ghaffari MH (2022) Milk feeding level and starter protein content: Effects on growth performance, blood metabolites, and urinary purine derivatives of Holstein dairy calves. Journal of Dairy Science 105: 1115-1130.

Lombardi B, Alvarado PI, Ricci P, Guzmán SA, Gonda HL, Juliarena MP (2021) Methane and nitrous oxide emissions from dung patches deposited by grazing cattle supplemented with maize grain. Animal Feed Science and Technology 279: e115029. DOI: 10.1016/j.anifeedsci.2021.115029.

Mestra LI, Santana M O, Mejia L., Ortiz CR, Paternina SE (2020) Caracterización de sistemas de alimentación de ovinos en el departamento de Córdoba, Colombia. Archivos de zootecnia 69: 432-443.

Makkar HP (2004) Recent advances in the in vitro gas method for evaluation of nutritional quality of feed re- sources. Assessing quality and safety of animal feeds 160: 55-88.

MartínezGDM,PérezFXP,MellaMR,DelgadilloMAM,RangelHL,BarcenaGRB(2007)Evaluacióndealimentos integrales para el engorde intensivo de ovinos. Revista Científica 17: 72-82.

Martínez-Hernández BE, Salvador-Flores O, Miranda-Romero LA (2019) Indicador de calentamiento global a partir de la fermentación ruminal de alimentos con diferentes niveles de energía y proteína. Pastos y Forrajes 42: 285-289.

Menke KE, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 27: 7-55.

Miranda-Romero LA, Tirado-González DN, Tirado-Estrada G, Améndola-Massiotti R, Sandoval-González L, Ra- mírez-Valverde R, Salem AZ (2020) Quantifying non-fibrous carbohydrates, acid detergent fiber and cellu- lose of forage through an in vitro gas production technique. Journal of the Science of Food and Agriculture 100: 3099-3110.

Murillo M, Herrera E, Carrete FO, Ruiz O, Serrato JS (2012) Chemical composition, in vitro gas production, ruminal fermentation and degradation patterns of diets by grazing steers in native range of North Mexico. Asian-Australasian Journal of Animal Sciences 25: 1395-1403.

NRC (2007) Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 1st Edition. National Research Council. National Academy Press, Washington, DC, USA. 352p.

Opatpatanakit Y, Kellaway RC, Lean IJ, Annison G, Kirby A (1994) Microbial fermentation of cereal grains in vitro. Journal of Agricultural Research 45: 1247-1263.

Paredes KPT (2022) Contribución de las emisiones de gas metano producidas por el ganado bovino al cambio climático. Revista Iberoamericana Ambiente & Sustentabilidad. 5: 215. DOI: 10.46380/rias.v5.e215.

Phesatcha B, Phesatcha K, Viennaxay B, Matra M, Totakul P, Wanapat M (2022) Cricket Meal (Gryllus bimacula- tus) as a Protein Supplement on In Vitro Fermentation Characteristics and Methane Mitigation. Insects 13: 129. DOI: 10.3390/insects13020129.

Ramírez-Díaz R, Pinto-Ruiz R, Medina-Jonapá F, Guevara-Hernández F (2020) Effect of inoculants and additives on fractions of ruminal fermentation and in vitro degradation in sorghum silage (Sorghum sp). CienciaUAT 15: 172-179.

Rodríguez R, Sosa A, Rodríguez Y (2007) La síntesis de proteína microbiana en el rumen y su importancia para los rumiantes. Revista Cubana de Ciencia Agrícola 41: 303-311.

Ruiz RP, Díaz AAP, de Coss AL, Díaz RR, Paniagua LFM, Hernández FG, Vengas JAV (2018) Estimación de la producción de metano (CH4) y dióxido de carbono (CO2) de la cerdaza. Avances en Investigación Agropecuaria 22: 35-46.

SAGARPA (2001) Norma Oficial Mexicana NOM-062-ZOO-1999 Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Diario Oficial de la Federación, México. 22 de agosto de 2001.

Salinas-Chavira J, Gutiérrez-González JC, García-Castillo R, López-Trujillo R, Duarte-Ortuño A (2011) Digestibi- lidad in situ de la materia seca de tres dietas para ovinos de engorda. Agronomía Mesoamericana 22: 379-385.

Sánchez N, Mendoza G, Martínez J, Hernández P, Miranda L, Villarreal EBO (2019) Efecto de bloques con propionato de calcio sobre respuestas productivas en corderos y GEI in vitro. Revista MVZ Córdoba 24: 7188-7192.

Sandoval-Pelcastre AA, Ramírez-Mella M, Rodríguez-Ávila NL, Candelaria-Martínez B (2020) Trees and shrubs with potential to reduce the production of methane in ruminants. Tropical and Subtropical Agroecosystems 23: 1-16.

SAS (2015) Base SAS 9.4 procedures guide. SAS Institute. https://go.documentation.sas.com/doc/en/pgmsas cdc/9.4_3.5/procstat/titlepage.htm. Fecha consultada: 18 marzo de 2022.

Schofield P, Pitt RE, Pell AN (1994) Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science 72: 2980-2991.

Sileshi G, Mitiku E, Mengistu U, Adugna T, Fekede F (2021) Effects of dietary energy and protein levels on nu- trient intake, digestibility, and body weight change in Hararghe highland and Afar sheep breeds of Ethiopia. Journal of Advanced Veterinary and Animal Research 8: 185-194.

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185-197.

Tirado-González DN, Jáuregui-Rincón J, Tirado-Estrada GG, Martínez-Hernández PA, Guevara-Lara F, Miranda- Romero LA (2016) Production of cellulases and xylanases by white-rot fungi cultured in corn stover media for ruminant feed applications. Animal Feed Science and Technology 221: 147-156.

Van-Soest PJB, Robertson JA, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.

Velázquez-Duarte JA, Vega-Britez GD, Lesmo-Duarte ND, Ferreira-Agüero AMA, Giménez MA, Barreto-Pérez WS, Acosta-Resquin MF (2022) Uso de glicerina bruta en la reducción de pérdidas fermentativas de ensilaje de Pennisetum purpureum. Temas Agrarios 27: 378-384.

Vélez-Terranova M, Gaona RC, Sánchez-Guerrero H (2014) Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Tropical and Subtropical Agroecosystems 17: 489-499.

Villalba JJ, Ates S, MacAdam JW (2021) Non-fiber Carbohydrates in Forages and Their Influence on Beef Pro- duction Systems. Frontiers in Sustainable Food Systems 5: e566338. DOI: 10.3389/fsufs.2021.566338.

Zhang Z, Wang S, Wang M, Shahzad K, Zhang X, Qi R, Shi L (2020) Effects of Urtica cannabina to Ley- mus chinensis ratios on ruminal microorganisms and fiber degradation in vitro. Animals 10: 335. DOI: 10.3390/ani10020335.

Zhong RZ, Fang Y, Sun HX, Wang M, ZhouDW (2016) Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. Journal of Integrative Agriculture 15: 414-42.

Descargas

Publicado

2023-06-15

Cómo citar

De la Rosa- Zariñana, A. E., Miranda-Romero, L. A., Martínez-Hernández, P. A., Vargas-Villamil, L. M., & Elmasry, A. (2023). Nivel de proteína y energía en la fermentación in vitro de dietas para borregos. Ecosistemas Y Recursos Agropecuarios, 10(2). https://doi.org/10.19136/era.a10n2.3545

Número

Sección

ARTÍCULOS CIENTÍFICOS

Artículos más leídos del mismo autor/a