Efectos a corto plazo de los cultivos de cobertura sobre propiedades y macrofauna del suelo
DOI:
https://doi.org/10.19136/era.a10n2.3645Palabras clave:
fauna del suelo, hábitat edáfico, indicadores, rotaciones de cultivos, salud del sueloResumen
La evaluación de los cambios a nivel edáfico debido a la implementación de diferentes prácticas de manejo requiere el análisis de variables de distinta naturaleza. El objetivo de este trabajo fue determinar las variaciones anuales en propiedades y macrofauna del suelo, y las interacciones entre ambas, en secuencias rotacionales con y sin cultivos de cobertura (CC). Se trabajó en un experimento instalado en la localidad de Zavalla (Santa Fe, Argentina) y los tratamientos estudiados incluyeron CC (vicia y triticale) y barbecho químico como antecesores de maíz y soja, respectivamente. Se determinó carbono orgánico total (COT) y particulado (COP), porcentaje de agregados estables al agua (AEA), pH, parámetros comunitarios de macrofauna hipogea del suelo y abundancia de grupos tróficos. Los CC generaron valores superiores en COP y porcentaje de AEA en comparación con los de barbecho, en tanto que el COT presentó una tendencia de incremento anual en todos los tratamientos. En cuanto a las comunidades de macrofauna, el CC de vicia introdujo cambios favorables en abundancia, riqueza y diversidad luego de su ciclo de crecimiento, mientras que el triticale presentó una respuesta similar al barbecho y con valores inferiores a los de vicia. Los grupos tróficos registraron variaciones estacionales en su abundancia y cambios vinculados con las características de las secuencias rotacionales. Los CC causaron modificaciones en el corto plazo sobre propiedades y macrofauna del suelo debido a la cobertura generada y el aporte de materiales orgánicos.
Descargas
Referencias
Amazonas NT, Viani RAG, Rego MAG, Camargo FF, Fujihara RT, Valsechi OA (2018) Soil macrofauna density and diversity across a chronosequence of tropical forest restoration in southeastern Brazil. Brazilian Journal of Biology 78: 449-456.
Anderson JM, Ingram JSI (1993) Field procedures. Soil. In: Anderson JM, Ingram JSI (eds) Tropical soil biology and fertility. A handbook of methods. CAB International. Wallingford, UK. pp: 41-46.
Bedano JC, Domínguez A, Arolfo R, Wall LC (2016) Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with and without soil types. Soil and Tillage Research 158: 100-109.
Bedano JC, Domínguez A (2017) Biología del suelo: meso y macrofauna. En: Santos DJ, Wilson MG, Ostinelli MM (eds) Metodología de muestreo de suelo y ensayos a campo. Protocolos básicos comunes. Ediciones INTA. Entre Ríos, Argentina. pp: 122-138.
Beltrán MJ, Sainz-Rozas H, Galantini JA, Romaniuk RI, Barbieri P (2018) Cover crops in the Southeastern region of Buenos Aires, Argentina: effects on organic matter physical fractions and nutrient availability. Environ- mental Earth Sciences 77: 428. DOI: 10.1007/s12665-018-7606-0.
Beltrán MJ, Galantini JA, Tognetti PM, Barraco MR (2022) Interacción entre cultivos comerciales y de cobertura. Producción, dinámica del agua y nitratos del suelo. Ciencia del Suelo 40: 24-37.
Blanco-Canqui H, Ruis SJ (2020) Cover crops impacts on soil physical properties: a review. Soil Science Society of America Journal 84: 1527-1576.
Blankinship JC, Fonte SJ, Six J., Schimel JP (2016) Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 272: 39-50.
Bodner G, Himmelbauer M, Loiskand W., Kaul HP (2010) Improved evaluation of cover crops species by growth and root factors. Agronomy for Sustainable Development 30: 455-464.
Bogati K, Walczak M (2022) The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy 12: 189. DOI: 10.3390/agronomy12010189.
Bolinder MA, Crotty F, Elsen A, Frac M, Kismányoky T, Lipiec J, Tits M, Tóth Z, Kätterer T (2020) The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitigation and Adaptation Strategies for Global Change 25: 929-952.
Borror DJ, Triplehorn CA, Johnson NF (1992) An introduction to the study of insects. 6th Edition. Sunders College Publishing. Philadephia, USA. 875p.
Brévault T, Bikay S, Maldés JM, Naudin K (2007) Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil and Tillage Research 97: 140-149.
Brown GG, Niva CC, Zagatto MRG, Ferreira S, Nadolny HS, Cardoso GBX, Santos A, Martínez GA, Pasini A, Bartz MLC, Sautter KD,
Thomazini MJ, Baretta D, da Silva E, Antoniolli ZI, Decaëns T, Lavelle PM, Souza JP, Carvalho F (2015) Biodiversidade da fauna do solo e sua contribuição para os serviços ambientais. En: Parron LM, García J, Oliveira E, Brown GG, Prado RB (eds) Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Embrapa. Brasilia, Brasil. pp: 121-154.
Cabrera G (2012) La macrofauna edáfica como indicador biológico del estado de conservación/perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes 35: 349-364.
Cabrera-Dávila G, Sánchez Rendón JA, Ponce de León Lima D (2022) Macrofauna edáfica: composición, variación y utilización como bioindicador según impacto del uso y calidad del suelo. Acta Botánica Cubana 221: 1-21.
Cáceres LM (1980) Caracterización climática de la provincia de Santa Fe. Ministerio de Agricultura y Ganadería. Santa Fe, Argentina. 35p.
Cambardella C, Elliot E (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56: 777-783.
Castiglioni M, Navarro-Padilla R, Eiza M, Romaniuk R, Beltrán M, Mousegne F (2016) Respuesta en el corto plazo de algunas propiedades físicas a la introducción de cultivos de cobertura. Ciencia del Suelo 34: 263-278.
Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH (2009) Evaluation of different soil carbon determination methods. Critical Reviews in Plant Science 28: 164-178.
Claps LE, Debandi G, Roig-Juñent S (2020) Biodiversidad de artrópodos argentinos. 1a Edición. Sociedad Entomológica Argentina. Mendoza, Argentina. 624p.
Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2020) InfoStat. Versión 2020. Centro de Transferencia InfoStat. Córdoba, Argentina.
Duval ME, Martínez JM, Iglesias J, Galantini JA, Wall L (2015) Secuencias de cultivos y su efecto sobre las fracciones orgánicas del suelo. En: de Sá Pereira E, Minoldo G, Galantini JA (eds) El impacto de los sistemas actuales de cultivo sobre las propiedades químicas del suelo y sus efectos sobre los balances de carbono. Ediciones INTA. Coronel Suárez, Buenos Aires, Argentina. pp: 51-55.
Duval ME, Galantini JA, Capurro JE, Martínez JM (2016) Winter cover crops in soybean monoculture: effects on soil organic carbon and its fractions. Soil and Tillage Research 161: 95-105.
Euteneur P, Wagentristl H, Steinkellner S, Fucks M, Zaller JG, Piepho HP, Butt KR (2020) Contrasting effects of cover crops on earthworms: Results from field monitoring and laboratory experiments on growth, reproduc- tion and food choice. European Journal of Soil Biology 100: 103225. DOI: 10.1016/j.ejsobi.2020.103225.
Falco LB, Momo F (2010) Selección de hábitat: efecto de la cobertura y tipo de suelo en lombrices de tierra. Acta Zoológica Mexicana 2: 179-187.
Fiorini A, Remelli S, Boselli R, Mantovi P, Ardenti F, Trevisan M, Menta C, Tabaglio V (2022) Driving crop yield, soil organic C pools and soil biodiversity with selected winter cover crops under no-till. Soil and Tillage Research 217: 105283. DOI: 10.1016/j.still.2021.105283.
Garba II, Bell LW, Williams A (2022) Cover crop legacy impacts on soil water and nitrogen dynamics and on subsequent crop yields in drylands: a meta-analysis. Agronomy for Sustainable Development 42: 34. DOI: 10.1007/s13593-022-00760-0.
Gedoz M, Freitas EM, da Silva VL, Johann L (2021) Edaphic invertebrates as indicators of soil integrity quality. Floresta e Ambiente 28(2): e20200069. DOI: 10.1590/2179-8087-FLORAM-2020-0069.
Goss MJ, Kay BD (2005) Soil aggregation. In: Zobel RW, Wright SE (eds) Roots and soil management: in- teractions between roots and soil. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. Wisconsin, USA. pp: 163-180.
Hénin S, Monnier G, Combeau A (1958) Méthode pour l’étude de la stabilité structurale des sols. Annales Agronomiques 9: 73-92.
Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van der putten WH, De Ruiter PC, Rusek J, Silver WI, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50: 1049-1061.
Horváth R, Magura T, Szinetár C, Eichardt J, Kovács E, Tóthmérész B (2015) In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agriculture, Ecosystems and Environment 208: 106-113.
INTA (1983) Carta de suelos de la República Argentina: Hoja 3360-20 y 21. Instituto Nacional de Tecnología Agropecuaria. Buenos Aires, Argentina. 75p.
Jiang Y, Ma N, Chen Z, Xie H (2018) Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of northeastern China. Applied Soil Ecology 128: 61-70.
Johnson RA (2000) Habitat segregation based on soil texture and body size in the seed-harvester ants Pogono- myrmex rugosus and P. barbatus. Ecological Entomology 25: 403-412.
Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7: 5875-5895.
Laossi KR, Barot S, Carvalho D, Dejardins T, Lavelle P, Martins M, Mitja D, Rendeiro AC, Rousseau G, Sarrazin M, Velasquez E, Grimaldi M (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia 51: 397-407.
Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170: 23-33.
Lo-Sardo PM, Lima JS (2019) Edaphic macrofauna as a recovery indicator of abandoned areas of Corym- bia citriodora in the southeastern Brazil. Floresta a Ambiente 26(4): e20190031. DOI: 10.1590/2179- 8087.003119.
Masín CE, Rodríguez AR, Maitre MI, Cerana J, Hernández JP, Anglada M, Elizalde JH, Lallana MC (2015) Riqueza de lombrices de tierra en un Argiudol bajo cultivo de soja (Colonia Ensayo, Entre Ríos). Revista Científica Agropecuaria UNER 19: 39-50.
Masters GJ (2004) Belowground herbivores and ecosystem processes. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer. Berlin, Germany. pp: 93-109.
McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6.0. MjM Software. Oregon, USA.
Menta C, Remelli S (2020) Soil health and arthropods: from complex system to worthwhile investigation. Insects 11: 54. DOI: 10.3390/insects11010054.
Montico S, Di-Leo N, Bonel B, Denoia J (2019) Cambios del uso de la tierra en la cuenca del arroyo Ludueña, Santa Fe: impacto en la sostenibilidad y en los servicios ecosistémicos. Cuadernos del CURIHAM 25: 31-39.
Montico S, Di-Leo N (2021) Riesgo de contaminación del acuífero freático con plaguicidas en la cuenca del arroyo Ludueña, Argentina. Ecosistemas y Recursos Agropecuarios 8(2): e2688. DOI: 10.19136/era.a8n2.2688.
Morel A, Ortiz Acosta O (2022) Calidad del suelo en diferentes usos y manejo por medio de la macrofauna como indicador biológico. Brazilian Journal of Animal and Environmental Research 5: 996-1006.
Morrone JJ, Coscarón S (1998) Biodiversidad de artrópodos argentinos. Una perspectiva biotaxonómica. 1a Edición. Ediciones Sur. La Plata, Buenos Aires, Argentina. 599p.
Nair A, Ngouajio M (2012) Soil microbial biomass, functional microbial diversity and nematode community struc- ture as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology 58: 45-55.
Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropods communities as a tool to assess soil quality and biodiversity. A new approach in Italy. Agriculture, Ecosystems and Environment 105: 323-333.
Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.
Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Rao CS, Sandeep S, Rinklebe J, Ok YS, Choudhury BU, Wang H, Tang C, Wang X, Song Z, Freeman Il OW (2019) Soil organic carbon dynamics: impact of land use changes and management practices: A review. Advances in Agronomy 156: 1-107 DOI: 10.1016/bs.agron.2019.02.001.
Restovich SB, Andriulo AE, Améndola C (2011) Introducción de cultivos de cobertura en la rotación soja-maíz: efecto sobre algunas propiedades del suelo. Ciencia del Suelo 29: 61-73.
Roig-Juñent S, Claps LE, Morrone JJ (2014a) Biodiversidad de artrópodos argentinos. 1a Edición, Volumen 3. Sociedad Entomológica Argentina. Tucumán, Argentina. 546p.
Roig-Juñent S, Claps LE, Morrone JJ (2014b) Biodiversidad de artrópodos argentinos. 1a Edición, Volumen 4. Sociedad Entomológica Argentina. Tucumán, Argentina. 547p.
Romaniuk R, Navarro-Padilla R, Beltrán M, Eiza M, Castiglioni M, Mousegne F (2018) Efecto a corto plazo de la inclusión de vicia y trigo como cultivos de cobertura sobre el C, N y P en distintas fracciones de la materia orgánica, y la disponibilidad de macro y micronutrientes. Revista de Investigaciones Agropecuarias 44: 48-60.
Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K (2018) Lomg-term use of cover crops and no till shift soil microbial community life strategies in agricultural soil. PLoS ONE 13(2): e0192953. DOI: 10.1371/jour- nal.pone.0192953.
Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd Edition. Natural Resources Conservation Service. Washington, USA. 886p.
Stehr FW (1991) Immature insects. 1st Edition. Kendall-Hunt Publishing Company. Iowa, USA. 992p.
Stuntz S, Ziegler C, Simon U, Zotz G (2002) Diversity and structure of the arthropod fauna within three canopy
epiphyte species in central Panama. Journal of Tropical Ecology 18: 161-176.
Swift MJ, Bignell D, Moreira F, Huising EJ (2012) El inventario de la diversidad biológica del suelo: conceptos y guía general. En: Moreira F, Huising EJ, Bignell DE (eds) Manual de biología de suelos tropicales. Muestreo y caracterización de la biodiversidad bajo suelo. Instituto Nacional de Ecología de México. México. pp: 29- 52.
ter Braak CJE, Verdonschot PEM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Acuatic Science 57: 1015-1621.
Vasconcelos WLF, Macedo Rodrigues D, Carvalho Silva RO, Alfaia SS (2020) Diversity and abundance of soil macrofauna in three land use systems in eastern Amazonia. Revista Brasileira de Ciência do Solo 44: e:01900136. DOI: 10.36783/18069657rbcs20190136.
Venter ZS, Jacobs K, Hawkins HJ (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59: 215-223.
Vittar F (2008) Hormigas (Hymenoptera: Formicidae) de la Mesopotamia Argentina. Miscelánea INSUGEO 17: 447-466.
Walkey A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a pro- posed modification of the chromic acid titration method. Soil Science 37: 29-37.
Wilson MG, Maggi AE, Castiglioni MG, Gabioud EA, Sasal MC (2020) Conservation of ecosystem services in Argiudolls of Argentina. Agriculture 10: 649. 10.3390/agricultura10120649.
Wingeyer AB, Amado TJ, Pérez-Bidegain M, Studdert GA, Varela CH, García F, Karlen DI (2015) Soil quality impacts of current south American agricultural practices. Sustainability 7: 2213-2242.
Wodika BR, Baer SG (2015) If we build it, will they colonize? A test of the field of dreams paradigm with soil macroinvertebrate communities. Applied Soil Ecology 91: 80-89.
Zhang Y, Peng S, Chen X, Chen HYH (2022) Plant diversity increases the abundance and diversity of soil fauna: a meta-analysis. Geoderma 411: 115649. DOI: 10.1016/j.geoderma.2022.115694.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Ecosistemas y Recursos Agropecuarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia internacional Creative Commons Reconocimiento-No comercial-Compartir igual 4.0 .de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Este trabajo está sujeto a una licencia internacional Creative Commons Reconocimiento-No comercial-Compartir igual 4.0 .