Identificación de Enterococcus aislados de lactosuero de quesos artesanales de Puebla
DOI:
https://doi.org/10.19136/era.a11n1.3727Palabras clave:
Aislamiento, bacterias ácido lácticas, Enterococcus, identificación fenotípica, identificación molecularResumen
La producción de queso artesanal en México iguala o supera a la producción formal, aproximadamente por cada 100 L de leche de bovino se obtienen 10 kg de queso y 90 L de lactosuero, este residuo es considerado como contaminante por su alta carga orgánica que además favorece el desarrollo de Enterococcus. En este trabajo se identificaron Enterococcus en muestras de lactosuero de cuatro localidades en Puebla. Se aislaron bacterias Gram positivas, catalasas negativas, con capacidad para crecer a diferentes temperaturas (10, 40 y 45 °C), valores de pH (9.2 y 9.6), y concentración de NaCl (4 y 6.5%). Se hicieron pruebas de PCR de punto final para confirmar la detección de Enterococcus faecium (19 cepas) y Enterococcus faecalis (seis cepas) en lactosuero de tres localidades, estos resultados sugieren que es necesario una mejor vigilancia sanitaria del lactosuero, para evitar la proliferación de microorganismos potencialmente patógenos.
Descargas
Referencias
Almeida-Santos AC, Novais C, Peixe L, Freitas, AR (2021) Enterococcus spp. as a Producer and Target of Bacteriocins: A DoubleEdged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics 10: 1215. https://doi.org/10.3390/antibiotics10101215
Alves DAP, D Souza SKA, Campos FGH, Batista XD, Campos PAC, Titze DAR (2009) Rapid detection of vancomycin-resistant Enterococci (VRE) in rectal samples from patients 12 de la biotecnología. Agroindustrial Science 11: 105–116. https://doi.org/10.1590/S1413-86702009000400010
Asas C, Llanos C, Matavaca J, Verdezoto D (2021) El lactosuero: impacto ambiental, usos y aplicaciones vía mecanismos de la biotecnología. Agroindustrial Science 11: 105–116. https://doi.org/10.17268/agroind.sci.2021.01.13
Asunis F, Gioannis GD, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D (2020) Review: The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmental Management 276: 111240. https://doi.org/10.1016/j.jenvman.2020.111240
Bettera L, Levante A, Bancalari E, Bottari B, Gatti M (2023) Lactic acid bacteria in cow raw milk for cheese production: Which and how many? Frontiers in Microbiology 13: 1092224. https://doi.org/10.3389/fmicb.2022.1092224
Braïek OB, Smaoui S (2019) Enterococci: Between Emerging Pathogens and Potential Probiotics, BioMed Research International 13 https://doi.org/10.1155/2019/5938210
Buchanan D, Martindale W, Romeih E, Hebishy E (2023) Recent advances in whey processing and valorisation: Technological and environmental perspectives. International Journal of Dairy Technology 76(2): 291-312. https://doi.org/10.1111/1471-0307.12935.
Caro I, Quinto EJ, Fuentes L, Alessandria V, Cocolin LS, Redondo-del-Río MP, Mayo B, Flores AB, Mateo J (2020) Characterization of Lactococcus strains isolated from artisanal Oaxaca cheese. LWT-Food Science and Technology 122: 109041. https://doi.org/10.1016/j.lwt.2020.109041
Centeno JA, Lorenzo JM, Carballo J (2022) Effects of autochthonous Kluyveromyces lactis and commercial Enterococcus faecium adjunct cultures on the volatile profile and the sensory characteristics of short-ripened acid-curd Cebreiro cheese. Food Microbiology 108: 104101. https://doi.org/10.1016/j.fm.2022.104101.
Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, Pruden A, Harwood VJ (2022) Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. Water Research X 17: 100161. https://doi.org/10.1016/j.wroa.2022.100161 .
De-Sousa MA, Muller MP, Berghahn E, De-Sousa CFV, Granada CE (2020) New Enterococci isolated from cheese whey derived from different animal sources: High Biotechnological potential as starter cultures. LWT-Food Science and Technology 131: 109808. https://doi.org/10.1016/j.lwt.2020.109808.
Decadt H, Weckx S, De-Vuyst L (2023) The microbial and metabolite composition of Gouda cheese made from pasteurized milk is determined by the processing chain. International Journal of Food Microbiology 110557. https://doi.org/10.1016/j.ijfoodmicro.2024.110557.
Domig KJ, Mayer HK, Kneifel W (2003) Methods used for the isolation, enumeration, characterization and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. International Journal of Food Microbiology 88: 165-188. https://doi.org/10.1016/S0168-1605(03)00178-8.
Dosuky AS, Elsayed TR, Yousef ET, Barakat OS, Nasr NF (2022) Isolation, identification, and application of lactic acid-producing bacteria using salted cheese whey substrate and immobilized cells technology. Journal of Genetic Engineering and Biotechnology 20: 26. https://doi.org/10.1186/s43141-022-03316-5.
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. Journal of Clinical Microbiology 33: 24-27. https://doi.org/10.1128/JCM.33.5.1434-1434.1995.
Georges M, Odoyo E, Matano D, Tiria F, Kyany’a C, Mbwika D, Mutai WC, Musila L (2022) Determination of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and virulence factors and their association with clinical and demographic factors in Kenya. Journal of Pathogens Article ID 3129439. https://doi.org/10.1155/2022/3129439
González-Córdova AF, Yescas C, Ortiz-Estrada AM, DLRosa-Alcaraz MDLA, Hernández-Mendoza A, Vallejo-Cordoba B (2016) Invited review: Artisanal mexican cheeses. Journal of Dairy Science 99: 3250-3261. http://dx.doi.org/10.3168/jds.2015-10103
Hawaz E, Guesh T, Kebede A, Menkir S (2016) Characterization of lactic acid bacteria from camel milk and their technological properties to use as a starter culture. East African Journal of Sciences 10: 49-60
Kasimin ME, Shamsuddin S, Molujin AM, Sabullah MK, Gansau JA, Jawan R (2022) Enterocin: Promising biopreservative produced by Enterococcus sp. Microorganisms 10: 684. https://doi.org/10.3390/microorganisms10040684
Knijff E, Dellaglio F, Lombardi A, Andrighetto C, Torriani S (2001) Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes. Journal of Microbiological Methods 47: 35-40.
Li C, Ding J, Chen D, Shi Z, Wang L (2020) Bioconversion of cheese whey into a hetero-exopolysaccharide via a one-step bioprocess and its applications. Biochemical Engineering Journal 165: 107701. https://doi.org/10.1016/j.bej.2020.107701.
Ludwig W, Schleifer KH, Whitman WB (2009) Genus I Enterococcus. In: Bergey’s manual of systematic bacteriology. Volume 3. The firmicutes. 2nd ed. Springer. Dordrecht, Heidelberg, London and New York. pp: 594-606.
Marasco R, Gazzillo M, Campolattano N, Sacco M, Muscariello L (2022) Isolation and identification of lactic acid bacteria from natural whey cultures of buffalo and cow milk. Foods 11: 233. http://dx.doi.org/10.3390/foods11020233.
Margalho PL, Van Schalkwijk S, Bachmann H, Sant’Ana SA (2020) Enterococcus spp. in Brazilian artisanal cheeses: Occurrence and assessment of phenotypic and safety properties of a large set of strains through the use of high throughput tools combined with multivariate statistics. Food Control 118: 107425. http://dx.doi.org/10.1016/j.foodcont.2020.104425.
Mazorra-Manzano MA, Moreno-Hernández JM (2019) Propiedades y opciones para valorizar el lactosuero de la quesería artesanal. Ciencia UAT 14: 133-144.
Metz M, Sheehan J, Feng PCH (2020) Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses–A literature review. Food Microbiology 85: 103283. http://dx.doi.org/10.1016/j.fm.2019.103283.
Murugesan S, Reyes-Mata MP, Nirmalkar K, Chavez-Carbajal A, Juarez-Hernandez JI, Torres-Gomez RE, Pina-Escobedo A, Maya O, Hoyo-Vadillo C, Ramos-Ramírez EG, Salazar-Montoya JA, Garcia-Mena J (2018) Profiling of bacterial and fungal communities of Mexican cheeses by high throughput DNA sequencing. Food Research International 113: 371-381. https://doi.org/10.1016/j.foodres.2018.07.023.
Nasiri M, Hanifian S (2022) Enterococcus faecalis and Enterococcus faecium in pasteurized milk: Prevalence, genotyping, and characterization of virulence traits. LWT-Food Science and Technology 153: 112452 https://doi.org/10.1016/j.lwt.2021.112452.
Olvera-García M, Sanchez-Flores A, Quirasco BM (2017) Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Applied Microbiology and Biotechnology 102: 2251-2267. https://doi.org/10.1007/s00253-018-8765-3.
Park E, Ha J, Lim S, Kim G, Yoon Y (2021) Development of postbiotics by whey bioconversion with Enterococcus faecalis M157 KACC81148BP and Lactococcus lactis CAU2013 KACC81152BP for treating periodontal disease and improving gut health. Journal of Dairy Science 104: 12. https://doi.org/10.3168/jds.2021-20616.
Quillama PE, Cruz PL, Gandolfo NG (2020) Selection and characterization of native Enterococcus Strains with antimicrobial potential isolated from artisanal manufactured cheeses. Ecología Aplicada 19: 25-34. http://dx.doi.org/10.21704/rea.v19i1.1443.
Rabaioli RG, Kuhn D, Beux S, Jachetti MM, Volken DSCF (2019) Potential applications of dairy whey for the production of lactic acid bacteria cultures. International Dairy Journal 98: 25-37. https://doi.org/10.1016/j.idairyj.2019.06.012.
Rangel-Ortega SDC, Campos-Múzquiz LG, Charles-Rodriguez AV, Chavez-Gonzalez ML, Palomo-Ligas L, Contreras-Esquivel JC, Solanilla-Duque JF, Flores-Gallegos AC, Rodríguez-Herrera R (2023) Review: Biological control of pathogens in artisanal cheeses. International Dairy Journal 140: 105612. https://doi.org/10.1016/j.idairyj.2023.105612.
Rivera-de-la-Cruz JF, Villegas DGA, Luis Alberto Miranda RLA, García CJL (2017) Identificación de bacterias acidolácticas antagónicas de Salmonella enterica var. Typhimurium aisladas de queso artesanal. Revista Mexicana de Ciencias Agrícolas 4: 785-797. https://doi.org/10.29312/remexca.v8i4.7.
Rocha-Mendoza D, Kosmerl E, Krentz A, Zhang L, Badiger S, Miyagusuku-Cruzado G (2020) Invited review: Acid Whey trends and health benefits. Journal of Dairy Science 104: 1262-1275. https://doi.org/10.3168/jds.2020-19038.
SCFI (1977) Norma Mexicana NMX-F-285-1977. Muestreo y Transporte de muestras de alimentos para su análisis microbiológico. Secretaría de Comercio y Fomento Industrial. http://www.conadesuca.gob.mx/eficienciaproductiva/normas/2013/nmx-f-285-1977.pdf. Fecha de consulta: 16 de enero de 2024.
SIAP (2023) Panorama agroalimentario-2023: Leche de bovino. México. Servicio de Información Agroalimentaria y Pesquera. https://www.gob.mx/siap/acciones-y-programas/panorama-agroalimentario-258035. Fecha de consulta: 16 de enero de 2024.
Song D, Lee HB, Kim GB, Kang SS (2022) Whey fermented by Enterococcus faecalis M157 exhibits antiinflammatory and antibiofilm activities against oral pathogenic bacteria. Journal of Dairy Science 105: 1900–1912. https://doi.org/10.3168/jds.2021-21233.
Terzić-Vidojević, A, Veljović K, Popović N, Tolinački M, Golić N (2021) Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 10: 2753. https://doi.org/10.3390/foods10112753
Torres-Llanez MJ, Vallejo-Cordoba B, Díaz-Cinco ME, Mazorra-Manzano MA, González-Córdova AF (2006) Characterization of the natural microflora of artisanal Mexican Fresco cheese. Food Control 17: 683–690. https://doi.org/10.1016/j.foodcont.2005.04.004.
Trejo-González L, Gutiérrez-Carrillo AE, Rodríguez-Hernández AI, · López Cuellar MR, Chavarría Hernández N (2022) Bacteriocins Produced by LAB Isolated from Cheeses within the Period 2009–2021: a Review. Probiotics & Antimicrobial Proteins 14: 238–251 https://doi.org/10.1007/s12602-021-09825-0.
Yean YC, Su YL, Lalitha P, Ravichandran M (2007) A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species. BMC Microbiology 7: 112-120. doi: 10.1186/1471-2180-7-112 http://www.biomedcentral.com/1471-2180/7/112.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Ecosistemas y Recursos Agropecuarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0