Masculinización, crecimiento y supervivencia de tilapia Oreochromis niloticus con inhibidores de aromatasa naturales y sintéticos

Masculinización de tilapia con flavonoides naturales y sintéticos

Autores/as

  • José Antonio Estrada-Godínez Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa
  • Anabel Alaníz-González Laboratorio de Reproducción y Cultivo de Peces, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa
  • María Isabel Abdo-de la Parra Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán
  • María Isaura Bañuelos-Vargas Laboratorio de Reproducción y Cultivo de Peces, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa
  • Gustavo Alejandro Rodriguez-Montes de Oca FACIMAR UAS

DOI:

https://doi.org/10.19136/era.a11n1.3795

Palabras clave:

Flavonoides, esteroides sintéticos, compuestos no esteroideos, masculinización, tilapia

Resumen

Se evaluó el efecto de inhibidores naturales y sintéticos de la enzima aromatasa sobre el crecimiento, supervivencia y masculinización en crías de tilapia del Nilo. Cinco flavonoides: crisina (CRI), 7-hidroxiflavona (7-HF), apigenina (NA), naringenina (NAR) y 7-metoxiflavona (7-MF) a 1 000, 1 500 y 2 000 mg kg-1; un compuesto no esteroideo: letrozol (LT) a 50, 100 y 200 mg kg-1 y dos esteroides sintéticos: exemestano (EXE) a 1 000, 1 500 y 2 000 mg kg-1 y 17 α-metiltestosterona (MT) a 60 mg kg-1 (C+) y un control negativo libre de compuestos (C-). Cada tratamiento se realizó por triplicado con n= 30 peces por réplica (0.012 ± 0.01 g) en tanques cilíndricos (6 L) con flujo continuo a 28°C. Los grupos 7-HF a 1 000 y 2 000 mg kg-1 presentaron el crecimiento específico significativamente mayor (16.08 ± 0.63% y 8.38 ± 2.11%, respectivamente). La supervivencia fue de 100%, excepto: 7-HF 2000 mg kg-1, NA 1 500 mg kg-1, 7-MF a 1 500 mg kg-1 y EXE 1 500 y 2 000 mg kg-1, con 80 y 90%. El porcentaje de machos en MT, EXE y LT fue 100%, pero los tratamientos con flavonoides fueron muy variables, pero incrementando de un 57% de machos en el C-, de 71 a 86%, para CRI 2000, 7-HI 1 500, y todos los niveles de inclusión de los tratamientos 7-MET, NA y NAR.Se espera continuar la evaluación para establecer la concentración de inhibidores naturales que sea más cercana a 100% de machos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abaho I, Masembe C, Akoll P, Jones CL (2022) The use of plant extracts to control tilapia reproduction: Current status and future perspectives. Journal of The World Aquaculture Society 53: 593-619. https://doi.org/10.1111/jwas.12863.

Alaniz-González A, Rodríguez-Montes de Oca GA, Brito-Martínez XG, Román-Reyes JC (2014) Validación del uso de inhibidores sintéticos de la aromatasa en la masculinización de la tilapia Oreochromis niloticus. Revista Biológico Agropecuaria Tuxpan 2(1): 434-440.

Al-Hakim NF, Saleh M, Aly K, Tahoun AM (2012) Induction of mono-sex (male tilapia) population by inter-specific hybridization and hormonal sex reversal of Nile tilapia. Egytian Journal of Aquatic Biology & Fisheries 17: 23-33.

Astudillo L, Ávila F, Morrison R, Gutiérrez, M, Bastida J, Codina C, Schmea-Hirshmann G (2000) Biologically active compounds from chilean propolis. Boletín de la Sociedad Chilena de Química 45: 577-581.

Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition 81: 317S-325S.

Betancur-López JJ, Quintero-Velez JC, Ostos-Alfonso H, Barreiro-Sánchez F, Olivera-Ángel M (2014) Effectiveness of the aromatase (P450 Arom) inhibitors Letrozole and Exemestane for masculinization of red tilapia (Oreochromis spp.). Revista Colombiana de Ciencias Pecuarias 27: 47-53.

Budd AM, Banh QQ, Domingos JA, Jerry DR (2015) Sex control in fish: approaches, challenges and opportunities for aquaculture. Journal of Marine Science and Engineering 3: 329-355. https://doi.org/10.3390/jmse3020329

Chakraborty SB, Hancz C (2011) Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Reviews in Aquaculture 3: 103-119. https://doi.org/10.1111/j.1753-5131.2011.01048.x

Chakraborti SB, Horn P, Hancz C (2014) Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Reviews in Aquaculture 5: 1-9. https://doi.org/10.1111/raq.12021

Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquaculture International 18: 403-414.

Coward K, Bromage NR (2000) Reproductive physiology of female tilapia broodstock. Reviews in Fish Biology and Fisheries 10(1): 1-25. https://doi.org/10.1023/A:1008942318272

Das R, Rather MA, Basavaraja N, Sharma R, Udit UK (2012) Effect of nonsteroidal aromatase inhibitor on sex reversal of Oreochromis mossambicus (Peters, 1852). The Israeli Journal of Aquaculture- Bamidgeh 64: 1-7.

De Graaf GJ, Galemoni F, Huisman EA (1999) Reproductive biology of pond-reared Nile tilapia, Oreochromis niloticus L. Aquaculture Research 30: 25-33.

Donaldson EM, Devlin RH (1996) Uses of biotechnology to enhance production. In: Pennel W, Barton B (eds) Principles of salmonids culture. Elsevier. Amstedam. pp. 969-1020.

El-Greisy ZA, El-Gamal AE (2012) Monosex production of tilapia, Oreochromis niloticus using different doses of 17a-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egyptian Journal of Aquatic Research 38: 59-66.

El-Sayed A-FM, Mansour CR, Ezzat AA (2003) Effects of dietary protein level on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock reared at different water salinities. Aquaculture 220: 619-632.

El-Sayed A-FM (2006) Tilapia Culture. CAB International. Wallingford. p. 277. https://doi.org/10.1079/9780851990149.0000

Gabriel NN, Qiang J, Kpundeh MD, Xu P (2015) Use of herbal extracts for controlling reproduction in tilapia culture: trends and prospects - a review. The Israeli Journal of Aquaculture- Bamidgeh 67: 1-22.

Gabriel NN (2019) Review on the progress in the role of herbal extracts in tilapia culture. Cogent Food & Agriculture 5: 1. 1619651. https://doi.org/10.1080/23311932.2019.1619651

Gale WL, Fitzpatrick MS, Lucero M, Contreras-Sánchez WM, Schreck CB (1999) Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens. Aquaculture 178: 349-357.

Gao ZX, Wang HP, Wallat G, Yao H, Rapp D, O´Bryant P, MacDonald R, Wang WM (2010) Effects of a nonsteroidal aromatase inhibitor on gonadal differentiation of bluegill sunfish Lepomis macrochirus. Aquaculture Research 41(9): 1282-1289.

Ghosal I, Chakraborty SB (2017) Production of monosex all-male Nile tilapia using ethanol extract of Tribulus terrestris seeds. Proceedings of the Zoological Society 73: 188-191.

Guerrero RD, Shelton WL (1974) An aceto-carmine squash method for sexing juvenile fishes. The progressive fish-culturist 36: 56-56.

Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 2013: 162750.

Jeong HJ, Shin YG, Kim IH, Pezzuto JM (1999) Inhibition of aromatase activity by flavonoids. Archives of Pharmacal Research 22: 309-312.

Macintosh DJ, Little DC (1995) Nile tilapia (Oreochromis niloticus). In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science. Oxford, UK. pp. 277-320.

Mukherjee D, Ghosal I, Hancz D, Chakraborty SB (2018) Dietary administration of plant extracts for production of monosex tilapia: searching a suitable alternative to synthetic steroids in tilapia culture. Turkish Journal of Fisheries and Aquatic Sciences 18: 267-275.

Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM (2001) Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition 74: 418-425.

Ohno K, Araki N, Yanase T, Nawata H, Iida M (2004) A Novel nonradioactive method for measuring aromatase activity using a human ovarian granulosa-like yumor cell line and an estrone ELISA. Toxicological Sciences 82: 443-450.

Omeje VO, Lambrechts H, Brin D (2018) Effect of pawpaw (Carica papaya) seed meal on sex determination, growth, and survival, of Oreochromis mossambicus fry. Israeli Journal of Aquaculture-Bamidgeh 70: 1-12.

Omeje VO, Lambrechts H, Brink D (2020) Use of pawpaw (Carica papaya) seed in tilapia sex reversal. Reviews in Agricultural Science 8: 230-242. https://doi.org/10.7831/ras.8.0_230

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. Journal of Nutritional Science 5(47): 1-15

Pandian TJ, Vardaraj K (1987) Techniques to regulate sex ratio and breeding in tilapia. Current Science 56(8): 337-343.

Pandian TJ, Sheela SG (1995) Hormonal induction of sex reversal in fish. Aquaculture 138: 1-22.

Pouget C, Fagnere C, Basly JP, Besson AE, Champavier Y, Habrioux G, Chulia AJ (2002) Synthesis and aromatase inhibitory activity of flavanones. Pharmaceutical Research 19(3): 286-291.

Ponzoni RW, Nguyen NH, Khaw HL, Hamzah A, Bakar KRA, Yee HY (2011) Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Reviews in Aquaculture 3(1): 27-41.

Rodríguez-Montes de Oca GA, Dabrowski K, Contreras WM (2014) Dietary administration of daidzein, chrysin, caffeic acid and spironolactone on growth, sex ratio and bioaccumulation in genetically all-male and all-female Nile tilapia (Oreochromis niloticus). Discourse Journal of Agriculture and Food Sciences 2(3): 91-99.

Roque RLA, Bolivar RB, Rafael RR (2018) Phytochemical screening and masculinization of Nile tilapia (Oreochromis niloticus Linnaeus) using the needle and root crude extracts of Benguet pine (Pinus kesiya Royle ex Gordon). International Journal of Agricultural Technology (Special Issue) 14(7): 1801-1812.

Rubio C, Alurralde T, Suárez S, Navarro A (2011) Producción de naringenina por Aspergillus niger IB-56. Boletín Microbiológico 26: 23-27.

Sadek MFA, Nady AS, Abou Zied RM (2022) Effect of some nutritional and environmental factors on production of mono sex Nile tilapia (Oreochromis niloticus). Journal of Animal and Poultry Production 13(1): 15-23.

Simpson ER (2003) Sources of estrogen and their importance. The Journal of Steroid Biochemistry and Molecular Biology 86(3–5): 225-230.

Tsuji PA, Walle T (2008) Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chemico-biological interactions 171: 37-44.

Ugonna BO, Solomon SG, Olufeagba SO, Okomoda VT (2015) Effect of Carica papaya seed meal on growth and as a natural sex-reversal agent for Oreochromis niloticus (Linnaeus, 1758). North American Journal of Aquaculture 80(3): 278-285.

Valkama E, Salminen JP, Koricheva J, Pihlaja K (2004) Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Annals of Botany 94(2): 233-242.

Wassermann GJ, Bertolla-Afonso LO (2003) Sex reversal in Nile tilapia (Oreochromis niloticus Linnaeus) by androgen immersion. Aquaculture Research 34: 65-71.

Wokeh OK, Orose E (2021) Use of dietary phytochemicals as control for excessive breeding in Nile Tilapia (Oreochromis niloticus): a review. GSC Biological and Pharmaceutical Sciences 17(2): 152-159.

Yahiaoui S, Fagnere C, Pouget C, Buxeraud J, Chulia AJ (2008) New 7,8-benzoflavanones as potent aromatase inhibitors: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry 16 (3): 1478-1480.

Zaki M, F, M Said M, Tahoun AA, Amer M (2021) Evaluation of different sex reversal treatments in red tilapia hybrid. Egyptian Journal of Aquatic Biology and Fisheries 25(1): 279-292.

Zanoli P, Avallone R, Baraldi M (2000) Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 71(1): 117-123.

Zhao J, Dasmahapatra AK, Khan SI, Khan IA (2008) Anti-aromatase activity of the constituents from damiana (Turnera diffusa). Journal of Ethnopharmacology 120(3): 387-393.

Descargas

Publicado

2024-02-01

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Masculinización, crecimiento y supervivencia de tilapia Oreochromis niloticus con inhibidores de aromatasa naturales y sintéticos: Masculinización de tilapia con flavonoides naturales y sintéticos. (2024). Ecosistemas Y Recursos Agropecuarios, 11(1). https://doi.org/10.19136/era.a11n1.3795

Artículos similares

1-10 de 92

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a