Predicción genómica de peso vivo con dos métodos de validación cruzada en ganado bovino
DOI:
https://doi.org/10.19136/era.a11n1.3817Palabras clave:
BLUP, Charolais, crecimiento, evaluación genómica de un solo paso, SNP, selección genómicaResumen
Se estimó la exactitud de la predicción (EP) de valores genómicos estimados (GEBV) para variables de peso vivo de ganado Charolais utilizando dos métodos de validación cruzada. Se ajustó un modelo BLUP y diferentes métodos de predicción genómica (PG) Genomic-based best linear unbiased prediction (GBLUP), Bayes C (BC) y Single-step Bayesian regression (SSBR). La EP fue comparada mediante grupos de validación (GV) formados aleatoriamente y mediante GC. Los resultados mostraron que los tres métodos de PG proporcionaron exactitudes de predicción similares entre los
GVpero no exactitudes de predicción superiores a BLUP. La exactitud de predicción de GBLUP y BLUP fue 0.35 y 0.37 para PN, y de 0.30 y 0.41 para PD, respectivamente. Los resultados muestran bajas exactitudes de PG bajo los escenarios evaluados; por lo que para su correcta implementación es necesario incrementar el número de animales y usar valorees genéticos desregresados como variables de respuesta.
Descargas
Referencias
Asociación Charolais-Charbray Herdbook de México (2020) Sumario de sementales Charolais y Charbray. https://charolais.org.mx/wp-content/uploads/2020/08/Sumario-CHAROLAIS-2020-digital-B.pdf. Fecha de consulta: 15 de marzo de 2023.
Da-Silva NJB, Peripoli E, Pereira AS, Stafuzza NB, Lôbo RB, Fukumasu H, Ferraz JBS (2023) Weighted genomic prediction for growth and carcass‐related traits in Nelore cattle. Animal Genetics 54(3): 271-283. https://doi.org/10.1111/age.13310
Dekkers JC, Su H, Cheng J (2021) Predicting the accuracy of genomic predictions. Genetics Selection Evolution 53: 1-23. https://doi.org/10.1186/s12711-021-00647-w
Ferdosi MH, Kinghorn BP, van der Werf JH, Lee SH, Gondro C (2014) Hsphase: An R package for pedigree reconstruction, detection of recombination events, phasing and imputation of half-sib family groups. BMC Bioinformatics 15: 172. https://doi.org/10.1186/1471-2105-15-172
Fernando RL, Dekkers JCM, Garrick DJ (2014) A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genetic Selection Evolution 46: 50. https://doi.org/10.1186/1297-9686-46-50.
García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP (2016) Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedinngs of the National Academy of Sciences U S A. 113(28): E3995-4004. https://doi.org/10.1073/pnas.1519061113
Goddard ME, Hayes BJ (2007) Genomic selection. Journal of Animal breeding and Genetics 124(6): 323-330. https://doi.org/10.1111/j.1439-0388.2007.00702.x
Guinan FL, Wiggans GR, Norman HD, Dürr JW, Cole JB, Van Tassell CP, Misztal I, Lourenco D. (2023) Changes in genetic trends in US dairy cattle since the implementation of genomic selection. Journal of Dairy Science 106(2): 1110-1129. https://doi.org/10.3168/jds.2022-22205
Gunia M, Saintilan R, Venot E, Hozé C, Fouilloux MN, Phocas F (2014) Genomic prediction in French Charolais beef cattle using high-density single nucleotide polymorphism markers. Journal of Animal Science 92(8): 3258-3269. https://doi.org/10.2527/jas.2013-7478
Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12: 186. https://doi.org/10.1186/1471-2105-12-186
Huang Y, Hickey JM, Cleveland MA, Maltecca C (2012) Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost. Genetic Selection Evolution 44: 25. https://doi.org/10.1186/1297-9686-44-25
Jahuey-Martínez FJ, Parra-Bracamonte GM, Sifuentes-Rincón AM, Martínez-González JC, Gondro C, García-Pérez CA, López-Bustamante LA (2016) Genomewide association analysis of growth traits in Charolais beef cattle. Journal of Animal Science 94(11): 4570-4582. https://doi.org/10.2527/jas.2016-0359
Jahuey-Martínez FJ, Parra-Bracamonte GM, Garrick DJ, López-Villalobos N, Martínez-González JC, Sifuentes-Rincón AM, López-Bustamante LA (2020) Accuracies of direct genomic breeding values for birth and weaning weights of registered Charolais cattle in Mexico. Animal Production Science 60(6): 772-779. https://doi.org/10.1071/AN18363
JWAS (2017) Julia implementation of whole-genome analyses software using univariate and multivariate Bayesian mixed effects model. http://QTL.rocks. Fecha de consulta: 20 de febrero de 2023.
Lee J, Cheng H, Garrick D, Golden B, Dekkers J, Park K, Lee D, Fernando R (2017) Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics Selection Evolution 49(1): 2. https://doi.org/10.1186/s12711-016-0279-9
Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. Journal of Dairy Science 92: 4656-4663. https://doi.org/10.3168/jds.2009-2061
Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annual Reviews of Animal Biosciences 1: 221-37. https://doi.org/10.1146/annurev-animal-031412-103705.
Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4): 1819-1829.
Misztal I, Lourenco D, Legarra A (2020) Current status of genomic evaluation. Journal of Animal Science 98(4): 1–14. https://doi.org/10.1093/jas/skaa101
Naserkheil M, Lee DH, Mehrban H (2020) Improving the accuracy of genomic evaluation for linear body measurement traits using single-step genomic best linear unbiased prediction in Hanwoo beef cattle. BMC genetics 21(1): 1-9. https://doi.org/10.1186/s12863-020-00928-1
Parra-Bracamonte GM, Lopez-Villalobos N, Morris ST, Sifuentes-Rincón AM, Lopez-Bustamante LA (2016) Genetic trends for live weight traits reflect breeding strategies in registered Charolais Farms in Mexico. Tropical Animal Health and Production 48(8): 1729-1738. https://doi.org/10.1007/s11250-016-1150-2
Pérez P, de los Campos G (2014) Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 198(2): 483-495. https://doi.org/10.1534/genetics.114.164442
Peters SO, Kızılkaya K, Sinecen M, Mestav B, Thiruvenkadan AK, Thomas MG (2023) Genomic Prediction Accuracies for Growth and Carcass Traits in a Brangus Heifer Population. Animals 13(7): 1272. https://doi.org/10.3390/ani13071272
Pimentel EC, Wensch-Dorendorf M, König S, Swalve HH (2013) Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genetics Selection Evolution 45: 12. https://doi.org/10.1186/1297-9686-45-12
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Fecha de consulta: 17 de enero de 2020.
Rutkoski JE, Poland J, Jannink JL, Sorrells ME (2013) Imputation of unordered markers and the impact on genomic selection accuracy. G3: Genes| Genomes| Genetics 3(3): 427-439. https://doi.org/10.1534/g3.112.005363
Saatchi M, Ward J, Garrick DJ (2013) Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. Journal of Animal Science 91(4): 1538-1551. https://doi.org/10.2527/jas.2012-5593
Saatchi M, McClure MC, McKay SD, Rolf MD, Kim J, Decker JE, Tasia M, Taxis TM, Chapple RH, Ramey HR, Northcutt SL, Bauck S, Woodward B, Dekkers JCM, Fernando RL, Schnabel RD, Garrick DJ, Taylor JF (2011) Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics Selection Evolution 43(1): 40. https://doi.org/10.1186/1297-9686-43-40
Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ (2012) Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genetics Selection Evolution 44(1): 38. https://doi.org/10.1186/1297-9686-44-38
USDA (2023) Livestock and Poultry: World Markets and Trade. htts://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf. Fecha de consulta: 11 de abril de 2023.
VanRaden PM (2020) Symposium review: How to implement genomic selection. Journal of Dairy Science 103(6): 5291-5301. https://doi.org/10.3168/jds.2019-17684
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0