Funciones alométricas de altura total para pinos tropicales en Puebla, México

Autores/as

DOI:

https://doi.org/10.19136/era.a11n2.4118

Palabras clave:

Altura-diámetro, Funciones, Modelos, Pinus caribaea, Plantaciones

Resumen

Los pinos tropicales son importantes por la cantidad de madera que producen en periodos cortos de tiempo. Para ello, se requieren de funciones alométricas para predecir la altura total de los árboles, ya que es una de las variables indispensables para calcular el volumen total y comercial. El objetivo de la investigación fue desarrollar una función alométrica local y una generalizada para modelar la relación altura total-diámetro normal (at–dn) de Pinus caribaea var. hondurensis y del hibrido Pinus caribaea var. hondurensis × Pinus tecunumanii en la Sierra Norte de Puebla, México. Para analizar las relaciones se usaron 1 232 pares de datos de at–dn. Se ajustaron modelos alométricos con tres parámetros con el 80% de los datos y se validaron con el 20%. El mejor modelo fue el que presentó el menor sesgo promedio, raíz del error medio cuadrático y Criterio de Información de Akaike, así como el de mayor coeficiente de determinación ajustado. Los modelos explicaron más del 58.55% de la variabilidad en la at observada en los árboles. El modelo Logístico y de Weibull obtuvieron los mejores desempeños en el ajuste y validación, y estimaron con menor incertidumbre la at de los pinos tropicales. Las funciones alométricas ajustadas son confiables para predecir la at de los árboles, por lo que puede contribuir al manejo sustentable de plantaciones comerciales de pinos tropicales en la región de estudio.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Arias AD (2004) Estudio de las relaciones altura-diámetro para seis especies maderables utilizadas en programas de reforestación en la Zona Sur de Costa Rica. Kurú: Revista Forestal (Costa Rica) 1(2): 1-11.

Alvarado A, Raigosa J, Oviedo J (2012) Nutrición y fertilización del pino caribeño: (Pinus caribaea). Instituto Internacional de Nutrición de Plantas. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.ipni.net/publication/ia-lahp.nsf/0/F770BC5268BAB5FE852579A3006D815C/$FILE/Nutrici%C3%B3n%20y%20Fertilizaci%C3%B3n%20del%20Pino%20Caribe%C3%B1o.pdf. Fecha de consulta: 10 de enero de 2024.

Boca T, Fassola H, Crechi E, Barth S, Kelle A, Winck R, Ferrere P (2017) Modelos aditivos de predicción de biomasa aérea de Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis de Misiones Argentina. Quebracho (Santiago del Estero) 25(1): 5-15.

Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer. USA. 457p. https://doi.org/10.1007/978-90-481-3170-9.

Cappa EP, Marcó M, Garth DN, Last IS (2013) Performance of Pinus elliottii, Pinus caribaea, their F1, F2 and backcross hybrids and Pinus taeda to 10 years in the Mesopotamia region, Argentina. New Forests 44: 197-218. http://dx.doi.org/10.1007/s11056-012-9311-2.

Carus S, Akguș Y (2018) Development of diameter-height models for Stone pine (Pinus pinea L.) stands in Tarsus region. Turkish Journal of Forestry 19(1): 1-8. https://doi.org/10.18182/tjf.338311.

Chai Z, Tan W, Li Y, Yan L, Yuan H, Li Z (2018) Generalized nonlinear height–diameter models for a Cryptomeria fortunei plantation in the Pingba region of Guizhou Province, China. Web Ecology 18(1): 29-35. https://doi.org/10.5194/we-18-29-2018.

Chenge IB (2021) Height–diameter relationship of trees in Omo strict nature forest reserve, Nigeria. Trees, Forests and People 3: 100051. https://doi.org/10.1016/j.tfp.2020.100051.

Corral-Rivas S, Álvarez-González JG, Crecente-Campo F, Corral-Rivas JJ (2014) Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango, Mexico. Forest Ecosystems 1(1): 1-9. https://doi.org/10.1186/2197-5620-1-6

Corral-Rivas S, Silva-Antuna AM, Quiñonez-Barraza G (2019) Modelo generalizado no-lineal altura-diámetro con efectos mixtos para siete especies de Pinus en Durango, México. Revista Mexicana de Ciencias Forestales 10(53): 86-117. https://doi.org/10.29298/rmcf.v10i53.500.

Cruz-Cobos F, Quiñonez-Barraza G, Hernández-Merino V, Corral-Rivas S, Nava-Nava A (2023) Sistemas compatibles de ahusamiento y volumen comercial para dos especies de Pinus en Durango, México. Revista Mexicana de Ciencias Forestales 14(77): 76-102. https://doi.org/10.29298/rmcf.v14i77.1383.

Fu L, Lei X, Sharma RP, Li H, Zhu G, Hong L, You L, Duan G, Guo H, Lei Y (2018) Comparing height–age and height–diameter modelling approaches for estimating site productivity of natural uneven-aged forests. Forestry: An International Journal of Forest Research 91(4): 419-433. https://doi.org/10.1093/forestry/cpx049.

Gałecki A, Burzykowski T (2013) Linear mixed-effects models using R. Springer. New York, USA. 326p. https://doi.org/10.1007/978-1-4614-3900-4.

García-Cuevas X, Hernández-Ramos J, Hernández-Ramos A, Quiñonez-Barraza G, Tamarit-Urías JC, García-Espiza GG (2017) Predicción del diámetro normal, altura y volumen a partir del diámetro del tocón en especies tropicales. Revista Mexicana de Ciencias Forestales 8(43): 89-116.

García-Cuevas X, Hernández-Ramos J, Tamarit-Urías JC, Hernández-Ramos A, Buendía RE (2022) Modelo local altura-diámetro para Metopium brownei (Jacq.) Urb. en Quintana Roo, México. Revista Mexicana de Ciencias Forestales 13(73): 102-127. https://doi.org/10.29298/rmcf.v13i73.1199.

García E (2004) Modificaciones al Sistema de Clasificación Climática de Köppen. Quinta Edición. Ed. Instituto de Geografía, UNAM. Ciudad de México. 97p.

Gómez FE, González-Abreu A, Grá RH, Ancizar A (2004) Comportamiento de los índices de sitio más empleados para Pinus caribaea Mor. var. caribaea ante algunos factores edáficos que influyen en su crecimiento y desarrollo. Foresta Veracruzana 6(2): 19-26.

González IE, Barrero MH, Carrasco RY (2013) Evaluación de las clases de calidad de sitio de Pinus caribaea var. caribaea en la Empresa Forestal Integral Macurije (Pinar del Río, Cuba). Ecosistemas 22(3): 46-51. https://doi.org/10.7818/ECOS.2013.22-3.07.

Greaves ED, Marin Y, Visaez F (2015) Forestry plantations of Pinus caribaea in Venezuela as a solar energy collector. Interciencia 40(7): 457-464.

Guerra-De la Cruz V, Islas-Gutiérrez F, Flores-Ayala E, Acosta-Mireles M, Buendía-Rodríguez E, Carrillo-Anzures F, Tamarit-Urías JC, Pineda-Ojeda T (2019) Modelos locales altura-diámetro para Pinus montezumae Lamb. y Pinus teocote Schiede ex Schltdl. en Nanacamilpa, Tlaxcala. Revista Mexicana de Ciencias Forestales 10(51): 133-156. https://doi.org/10.29298/rmcf.v10i51.407.

Hernández-Ramos J, Avilés-Castillo A, García-Magaña JJ, Hernández-Ramos A, García-Cuevas X, Flores-López C (2020) Ecuaciones locales y generalizadas de altura-diámetro para Pinus patula Schl. et Cham. en Veracruz, México. Ecosistemas y recursos agropecuarios 7(3): 1-11. https://doi.org/10.19136/era.a7n3.2457.

Hernández-Ramos J, García-Cuevas X, Hernández-Ramos A, García-Magaña JJ, Muñoz-Flores HJ, Flores-López C, García-Espinoza GG (2015) Ecuaciones altura-diámetro generalizadas para Pinus teocote Schlecht. & Cham. en el estado Hidalgo. Revista Mexicana de Ciencias Forestales 6(31): 08-21. https://doi.org/10.29298/rmcf.v6i31.192.

Hernández-Ramos J, García-Magaña JJ, Hernández-Ramos A, García-Cuevas X, García-Espinoza GG, Muñoz-Flores HJ, Sáenz-Reyes J (2018) Allometric height-diameter equations for Pinus pseudostrobus Lindl. Ecosistemas y Recursos Agropecuarios 5(13): 15-23. https://doi.org/10.19136/era.a5n13.1131.

Huang S, Titus SJ, Wiens DP (1992) Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research 22(9): 1297-1304. https://doi.org/10.1139/x92-172.

Hulshof CM, Swenson N G, Weiser MD (2015) Tree height–diameter allometry across the United States. Ecology and evolution 5(6): 1193-1204. https://doi.org/10.1002/ece3.1328.

Kafuti C, Van den Bulcke J, Beeckman H, Van Acker J, Hubau W, De Mil T, Hatakiwe H, Djiofack B, Fayolle A, Panzou GJL (2022). Height-diameter allometric equations of an emergent tree species from The Congo Basin. Forest Ecology and Management 504: 119822. https://doi.org/10.1016/j.foreco.2021.119822.

Lei X, Peng C, Wang H, Zhou X (2009) Individual height–diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada. The Forestry Chronicle 85(1): 43-56. https://doi.org/10.5558/tfc85043-1.

Lin F, Xie L, Hao Y, Miao Z, Dong L (2022) Comparison of Modeling Approaches for the Height–diameter Relationship: An Example with Planted Mongolian Pine (Pinus sylvestris var. mongolica) Trees in Northeast China. Forests 13(8): 1168. https://doi.org/10.3390/f13081168.

Liu M, Feng Z, Zhang Z, Ma C, Wang M, Lian Bl, Sun R, Zhang L (2017) Development and evaluation of height diameter at breast models for native Chinese Metasequoia. PLoS ONE 12(8): e0182170. https://doi.org/10.1371/journal.pone.0182170.

López-Sánchez CA, Rodríguez SR, Álvarez GJG (2012) Relación altura-diámetro con parámetros aleatorios para rodales regulares de “Pseudotsuga Menziesii" en el norte de España. Cuadernos de la Sociedad Española de Ciencias Forestales 34: 135-140.

Mehtätalo L, De-Miguel S, Gregoire TG (2015) Modeling height-diameter curves for prediction. Canadian Journal of Forest Research 45(7): 826-837. https://doi.org/10.1139/cjfr-2015-0054.

Mehtätalo L, Kansanen K (2022) lmfor: Functions for Forest Biometrics. R package version 1.6, https://CRAN.R-project.org/package=lmfor. Fecha de consulta: 10 de noviembre de 2023.

Ogana F (2019) Tree height prediction models for two forest reserves in Nigeria using mixed-effects approach. Tropical Plant Research 6(1): 119-128. https://doi.org/10.22271/tpr.2019.v6.i1.017.

Ogana FN, Corral-Rivas S, Gorgoso-Varela JJ (2020) Nonlinear mixed-effect height-diameter model for Pinus pinaster Ait. and Pinus radiata D. Don. CERNE 26(1): 150-161. https://doi.org/10.1590/01047760202026012695.

Ordóñez-Prado C, Nava-Nava A, Tamarit-Urias JC, Hernández-Zaragoza P (2023). Ecuaciones para estimar la altura total de culmos comerciales en tres especies de bambú. Ecosistemas y Recursos Agropecuarios 10(3): e3696. https://doi.org/10.19136/era.a10n3.3696.

Özçelik R, Yavuz H, Karatepe Y, Gürlevik N. y Kiriş R (2014) Development of ecoregion-based height-diameter models for 3 economically important tree species of southern Turkey. Turkish Journal of Agriculture and Forestry 38(3): 399-412. https://doi.org/10.3906/tar-1304-115.

Pinheiro JC, Bates DM, Team RC (2023) Linear and Nonlinear Mixed Effects Models. https://svn.r-project.org/R-packages/trunk/nlme/. Fecha de consulta: 15 noviembre de 2023.

Pödör Z, Manninger M, Jereb L (2014) Application of sigmoid models for growth investigations of forest trees. In: van Do T, Thi H, Nguyen N (eds) Advanced computational methods for knowledge engineering. Advances in intelligent systems and computing. Vol 282. Springer Cham. Switzerland. pp. 353-364. https://doi.org/10.1007/978-3-319-06569-4_26.

Prodan M, Peters R, Cox F, Real P (1997) Mensura forestal. Instituto Interamericano de Cooperación para la agricultura (IICA). San José, Costa Rica. 586p.

Quiñónez-Barraza G, Cruz-Cobos F, Vargas-Larreta B, Hernández FJ (2012) Estimación del diámetro, altura y volumen a partir del tocón para especies forestales de Durango. Revista Mexicana de Ciencias Forestales 3(9): 23-40.

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Fecha de consulta: 25 de octubre de 2023.

Rubio EAC, Corral RS, López HJA, Chávez DÁA, Xelhuantzi CJ, Jürgen N (2022) Generalized height-diameter models with random effects for natural forests of central Mexico. CERNE 28: e103033. https://doi.org/10.1590/01047760202228013033v.

Ruiz-Careaga J, Castelán-Vega R, Tamariz-Flores V, Hernández MA (2014) Componentes del paisaje en el estado de Puebla, México. In: Flores-Domínguez CD, Priego-Santander A, Ruiz-Careaga J (eds) Ciencias ambientales. Temáticas para el desarrollo. Volumen VII. Benemérita Universidad Autónoma de Puebla. México. pp. 65-72.

Santiago-García W, Jacinto-Salinas A. H, Rodríguez-Ortiz G, Nava-Nava A, Santiago-García E, Ángeles-Pérez G, Enríquez-del Valle AH (2020) Generalized height-diameter models for five pine species at Southern Mexico. Forest Science and Technology 16(2): 49-55. https://doi.org/10.1080/21580103.2020.1746696.

Seki M, Sakici OE (2022) Ecoregional variation of Crimean pine (Pinus nigra subspecies pallasiana [Lamb.] Holmboe) stand growth. Forest Science 68(5-6): 452-463. https://doi.org/10.1093/forsci/fxac030.

Sharma R (2009) Modelling height-diameter relationship for Chir pine trees. Banko Janakari 19(2): 3-9. https://doi.org/10.3126/banko.v19i2.2978.

SMN (2022) Información Estadística Climatológica. Ciudad de México. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica. Fecha de consulta: 10 de octubre de 2023.

Stankova T, Dimitrova P, Gyuleva V, Stefanova P (2022) Height–diameter relationship of plantation-grown juvenile black locust trees is differentiated according to their growth rate, which is positively affected by spacing. Folia Forestalia Polonica 64(4): 195-205. https://doi.org/10.2478/ffp-2022-0019.

Tambarussi EV, Marques E G, Andrejow GMP, Peres FSB, Pereira FB (2018) Análise dialélica na avaliação do potencial de híbridos de Pinus elliottii x Pinus caribaea para a formação de populações de melhoramento. Scientia Forestalis 46(119): 395-403. https://doi.org/10.18671/scifor.v46n119.07.

Tanovski V, Matović B, Risteski M, Trajkov P (2023) Modelling the tree height-diameter relationship of Macedonian pine (Pinus peuce Gris.) forests in North Macedonia. Journal of Forest Science 69(11): 497-513.

Temesgen H, Zhang CH, Zhao XH (2014) Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology Management 316: 78-89. https://doi.org/10.1016/j.foreco.2013.07.035.

Torres-Ávila D, Santos-Posadas HMDeL, Velázquez-Martínez A, Tamarit-Urias JC (2020) Ahusamiento y volumen comercial de tres procedencias de pinos tropicales en plantaciones forestales de Veracruz, México. Madera y Bosques 26(3): e2331890. https://doi.org/10.21829/myb.2020.2631890.

Vallejos J, Badilla Y, Picado F, Murillo O (2010) Metodología para la selección e incorporación de árboles plus en programas de mejoramiento genético forestal. Agronomía Costarricense, 34(1), 105-119.

White TL, Adams WT, Neale DB (2007) Forest genetics. https://books.google.com.mx/books?id=UHZCeg4BqtkC&pg=PA1&hl=es&source=gbs_toc_r&cad=4#v=onepage&q&f=false. Fecha de consulta: 08 de marzo de 2024.

Wickham H (2009) Getting Started with ggplot2. In: ggplot2. Use R. Springer Cham. New York, USA. pp. 11-31. https://doi.org/10.1007/978-3-319-24277-4_2.

Xu Q, Lei X, Zang H, Zeng W (2022) Climate change effects on height–diameter allometric relationship vary with tree species and size for Larch plantations in northern and northeastern China. Forests 13(3): 468. https://doi.org/10.3390/f13030468.

Zhang L (1997) Cross-validation of non-linear growth functions for modelling tree height–diameter relationships. Annals of Botany 79(3): 251-257.

Zhang X, Fu L, Sharma RP, He X, Zhang H, Feng L, Zhou Z (2021) A nonlinear mixed-effects height-diameter model with interaction effects of stand density and site index for Larix olgensis in northeast China. Forests 12(11): 1460. https://doi.org/10.3390/f12111460.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2010) Mixed effects models and extensions in ecology with R. Springer-Verlag. New York, USA. 574p. https://doi.org/10.1007/978-0-387-87458-6.

Descargas

Publicado

2024-06-13

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Puc-Kauil, R., Nava-Nava, A., Paredes-Díaz, E., Ruiz-Aquino, F., Gerónimo-Torres, J. del C., & Ortiz, J. (2024). Funciones alométricas de altura total para pinos tropicales en Puebla, México. Ecosistemas Y Recursos Agropecuarios, 11(2). https://doi.org/10.19136/era.a11n2.4118

Artículos similares

1-10 de 229

También puede Iniciar una búsqueda de similitud avanzada para este artículo.