Similarity of longissimus thoracis parameters and fat thickness measured by ultrasound and digital image analysis
DOI:
https://doi.org/10.19136/era.a11n3.4226Palabras clave:
Características de la canal, software ImageJ, ovino de carne, ovino tropicalResumen
El objetivo del presente estudio fue evaluar la similitud del área (AMLTUS, cm2), la profundidad (PLTUS, cm) y la amplitud (ALTUS, cm) del músculo longissimus thoracis y el espesor de la grasa (EGSUS) medidos mediante ecografía y el programa informático ImageJ. Las mediciones ecográficas se realizaron en 36 ovinos, 24 h antes del sacrificio y se midieron inmediatamente utilizando calibradores electrónicos con una resolución de 0.1 cm. Las imágenes se almacenaron en una unidad flash, se abrieron en un ordenador y se midieron con ImageJ (PLTDIA, ALTDIA, AMLTDIA y EGSDIA). No hubo diferencias entre las mediciones ecográficas e ImageJ (P = 0.3610) para la prueba T2 de Hotelling. Nuestros resultados demuestran que el software ImageJ es una herramienta potencial para la medición in vivo de los parámetros del longissimus thoracis y el grosor de la grasa en ovejas de pelo.
Descargas
Referencias
Afonso J, Guedes C, Teixeira A, Rema P, Silva S (2022) In vivo ultrasound prediction of the fillet volume in senegalese Sole (Solea senegalensis). Animals 12: 2357. https://doi.org/10.3390/ani12182357
AFRC (1993) Technical Committee on Responses to Nutrients. Energy and protein requirements of ruminants. CAB International. Wallingford, UK. 118p.
Aguilar-Hernández E, Chay-Canul AJ, Gómez-Vázquez A, Magaña-Monforte JG, Ríos FG, Cruz-Hernández A (2016) Relationship of ultrasound measurements and carcass traits in Pelibuey ewes. Journal of Animal and Plant Sciences 26: 325-330.
Boruczkowski T, Boruczkowska H, Drozodz, W, Miszczak M, Leszczynski W (2022) Use of ImageJ software for assessment of mechanical damage to starch granules. Processes 10: 630. https://doi.org/10.3390/pr10040630
Brito LS, da Silva Cavalcante AK, Rodrigues AS, Ferraz PA, Bittencourt RF, Junior LDPM, de Lisboa Ribeiro Filho A (2022) Evaluation of ImageJ software in ultrasonic image analysis: Follicular and luteal morphological characteristics of cattle. Animal Reproduction Science 236: 106907. https://doi.org/10.1016/j.anireprosci.2021.106907
Camacho‑Pérez E, Lugo‑Quintal JM, Tirink C, Aguilar‑Quiñonez JA, Gastelum‑Delgado MA, Lee‑Rangel HA, Roque‑Jiménez JA, García‑Herrera RA, Chay‑Canul AJ (2023) Predicting carcass tissue composition in Blackbelly sheep using ultrasound measurements and machine learning methods. Tropical Animal Health and Production 55: 300. https://doi.org/10.1007/s11250-023-03759-1
Chay-Canul AJ, García-Herrera RA, Salazar-Cuytún R, Ojeda-Robertos NF, Cruz-Hernández A, Fonseca MA, Canul-Solís JR (2019) Development and evaluation of equations to predict body weight of Pelibuey ewes using heart girth. Revista Mexicana de Ciencias Pecuarias 10: 767-777. https://doi.org/10.22319/rmcp.v10i3.4911
Costa CM, Yang S (2009) Counting pollen grains using readily available, free image processing and analysis software. Annals of Botany 104(5): 1005-1010.
Gastelum-Delgado MA, Salazar-Cuytun R, Ramirez-Bautista MA, Antonio-Molina G, Orzuna-Orzuna JF, Garcia-Herrera RA, Chay-Canul AJ (2024) Predicting body fat depots in Katahdin sheep using ultrasound kidney fat thickness measurements. Small Ruminant Research, 231, 107183. https://doi.org/10.1016/j.smallrumres.2023.107183
Grill L, Ringdorfer F, Baumung R, Fuerst-Waltl B (2015) Evaluation of ultrasound scanning to predict carcass composition of Austrian meat sheep. Small Ruminant Research 123(2-3): 260-268. https://doi.org/10.1016/j.smallrumres.2014.12.005
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.
ImageJ (2024) Software. https://imagej.nih.gov/ij/. Data accessed: 20 August 2024.
Johnson RA, Wichern DW (2002) Applied Multivariate Statistical Analysis. Fifth Edition. Prentice-Hall, Inc. New Jersey, USA. 767p.
Manly BFJ, Navarro AJA (2016) Multivariate statistical methods: A primer. Fourth Edition. Chapman & Hall/CRC. Boca Raton. 253p.
Martin TN, Fipke GM, Minussi-Winck JE, Márchese JA (2020) ImageJ software a alternative method for estimating leaf area in oats. Acta Agronómica 69(3): 162-169.
Morales-Martínez MA, Arce-Recinos C, Mendoza-Taco MM, Luna-Palomera C, Ramirez-Bautista MA, Pineiro-Vazquez AT, Chay-Canul AJ (2020) Developing equations for predicting internal body fat in Pelibuey sheep using ultrasound measurements. Small Ruminant Research 183: 106031. https://doi.org/10.1016/j.smallrumres.2019.106031
Muñoz-Osorio GA, Tırınk C, Tyasi TL, Ramirez-Bautista MA, Cruz-Tamayo AA, Dzib-Cauich DA, Chay-Canul AJ (2024) Using fat thickness and longissimus thoracis traits real-time ultrasound measurements in Black Belly ewe lambs to predict carcass tissue composition through multiresponse multivariate adaptive regression splines algorithm. Meat Science 207: 109369. https://doi.org/10.1016/j.meatsci.2023.109369
Pimentel VM, Geraldo AT, Costa RLD, Ferreira J, Beltrame RT, Madella-Oliveira AF, Quirino CR (2023) Using real-time ultrasound for in vivo estimates of Longissimus dorsi muscle parameters and fat thickness in Dorper ewes. Small Ruminant Research 220: 106930. https://doi.org/10.1016/j.smallrumres.2023.106930
Rencher AC (2002) Methods of multivariate analysis. Second Edition. John Wiley and Sons. New Jersey, USA. https://doi.org/10.1002/0471271357
Sahin EH, Yardimci M, Cetingul IS, Bayram I, Sengor E (2008) The use of ultrasound to predict the carcass composition of live Akkaraman lambs. Meat Science 79(4): 716-721. https://doi.org/10.1016/j.meatsci.2007.11.003
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675.
Silva SR, Afonso JJ, Santos VA, Monteiro A, Guedes CM, Azevedo JMT, Dias-da-Silva A (2006) In vivo estimation of sheep carcass composition using real-time ultrasound with two probes of 5 and 7.5 MHz and image analysis. Journal of Animal Science 84(12): 3433-3439. https://doi.org/10.2527/jas.2006-154
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Ecosistemas y Recursos Agropecuarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0