Reducción de la metanogénesis ruminal in vitro con aceites vegetales de Thevetia peruviana y Persea americana

Autores/as

  • Karlos Edmundo Orozco-Durán Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
  • José Herrera Camacho Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
  • Octavio Alonso Castelán-Ortega Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México.
  • Liliana Márquez Benavides Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
  • Otoniel Buenrostro-Delgado Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
  • Juan Carlos Kú-Vera Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán.

DOI:

https://doi.org/10.19136/era.a3n9.874

Palabras clave:

ácidos grasos, metano, forrajes, rumiantes

Resumen

Se evaluó el efecto de la adición de proporciones 0, 1, 2, 3, 4, 5 y 6 % de aceites de semillas de Thevetia peruviana (TP) y frutos de aguacate Persea americana (AG) en cultivos in vitro de fluido ruminal bovino sobre la pro-ducción de gas (PG), metano (CH4), la digestibilidad de materia seca (DIVMS) y fibra detergente neutra (DIVFDN). Se utilizó un modelo lineal de contrastes ortogonales para el análisis de datos. Se encontró efecto (p < 0.0001) en la inclusión de ambos aceite sobre la PG a partir del 4 %, con una producción promedio de 220 cm3. En la producción de CH4, se encontró una disminución a partir del 3 % de inclusión de ambos aceites (p < 0.0001), con efecto lineal y cuadrático al aumentar la dosis. La DIVMS del tratamiento testigo fue del 67.2 %, disminuyendo significativamente a partir de los niveles 4, 5 y 6 % de ambos aceites. La DIVFDN, mostró una tendencia similar, disminuyendo en ambos tratamientos de manera significativa a partir del 4 % de inclusión. Para todas las variables evaluadas se encontró un efecto del nivel de aceite, pero no se observó efecto del tipo de aceite. El nivel del 3 % de suplementación de aceites de TP y AG redujo la producción de CH4, sin afectar la producción de gas y digestibilidad del forraje, por lo que puede ser el nivel más apropiado para evaluar su potencial en condiciones in vivo.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Karlos Edmundo Orozco-Durán, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
    Médico Veterinario Zootecnista, Maestro en producción animal tropical. Asesor técnico en sistemas de producción animal. Asesor de la asociación ganadera local especializada en ovinos de Michoacán. Apoyo en tesis, servicio social y servicios profesionales en estudiantes de medicina veterinaria y zootecnia de la Universidad Michoacana de San Nicolás de Hidalgo. Estudiante del programa institucional de doctorado en ciencias biológicas, Universidad Michoacana De San Nicolás de Hidalgo.
  • José Herrera Camacho, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
    MVZ, Maestro en Producción Animal tropical y Dr. En ciencas agropecuarias. Trabaja lineas de investigación relativas a nutricion y reproducción de rumiantes.
  • Octavio Alonso Castelán-Ortega, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México.
    MVZ, y Dr. en Ciencias Agropecuarias. Profesor investigador en el área d e nutrición de rumiantes, ganado lechero y cambio climático
  • Liliana Márquez Benavides, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
    Profesora-Investigadora en  el área de residuos sólidos y contaminantes del Instituto de ivestigaciones agropecuarias y forestales.
  • Otoniel Buenrostro-Delgado, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro Km 9.5. El Trébol, CP 58893. Tarímbaro, Michoacán, México.
    Profesor-Investigador en  el área de residuos sólidos y contaminantes del Instituto de ivestigaciones agropecuarias y forestales.
  • Juan Carlos Kú-Vera, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán.
    Médico veterinario zootecnista, y Dr. en Ciencia animal.  Es profesor-investigador del departamento de nutrición animal en el trópico, de la Facultad de Medicina Veterinaria y zootecnia. Desarrolla investigaciones sobre recursos forrajeros locales, nutrición y mitigación de metano en rumiantes.REDUCCIÓN DE LA METANOGÉNESIS RUMINAL IN VITRO CON ACEITES VEGETALES ALTERNATIVOS: Thevetia peruviana y Persea americana.

Referencias

Abdalla AL, Louvandini H, Abdallah SM, Da Silva CI, Tsai MS, De Oliveira A (2012) In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Tropical Animal Health and Production 44: 953-964.

AOAC International (2006) Official Methods of Analyses 18th ed .AOAC International.Gaithersburg, MD.

AOAC (2000) Official Methods of Analysis. Method 930.15 17th ed AOAC International.Gaithersburg, MD.

Beauchemin KA, Kreuzer M, O'Mara F, McAllister TA (2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48: 21–27.

Beauchemin KA, McGinn SM (2006) Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science 84: 1489-1496.

Beauchemin KA, McGinn SM, Petit HV (2007) Methane abatement strategies for cattle: lipid supplementation of diets. Canadian Journal of Animal Science 87: 431-440.

Benchaar C, Greathead H (2011) Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology 166–167: 338–355.

Benchaar C, Petit HV, Berthiaume R, Ouellet DR, Chiquette J, Chouinard PV (2007) Effects of essential oils on digestion, ruminal fermentation, ruminal microbial populations, milk production and milk composition in dairy cows fed alfalfa silage or corn silage. Journal of Dairy Science 90: 886-897.

Castagnino PS, Meesana JD, Fiorentini G, De Jesús RB, San Vito E, Carvalho IPC, Berchielli TT (2015) Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro. Animal Feed Science and Technology 201: 14-15.

Chandra DD, Basumatary S (2011) High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil. Biomass and Bioenergy 35: 1797-1803.

Cottle DJ, Nolan JV, Wiedemann SG (2011). Ruminant enteric methane mitigation: a review. Animal Production Science 51: 491-514.

Dewhurst RJ (2013) Editorial: greenhouse gasses and animal agriculture conference, Dublin, 2013. Animal 7:s2: 203-205.

Dewhurst RJ, Davies D R, Merry RJ (2000) Microbial protein supply from the rumen. Animal Feed Science and Technology 85: 1-21..

Dos Santos MAZ, Alicieo TVR, Pereira CMP, Ramis-Ramos G, Mendonca CRB (2014) Profile of bioactive compounds in avocado pulp oil: influence or the drying processes and extraction methods. Journal American Oil Chemistry Society 91: 19-27.

Eckard RJ, Graiger C, De Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science 130: 47-56.

Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497–509.

Food and Agriculture Organization (2009) Change in the livestock sector in: The state of food and agriculture, Livestock in the balance. FAO, Rome, Italy pp.:9-30.

García E (1964) Modificaciones al sistema de clasificación climática de Koppen (para adaptarlo a las condiciones de la Rep. Mexicana): México, D. F., Univ. Nal. Auton. México, Inst. Geografía. Pp. 35.

Gerber PJ, Henderson B, Makkar HPS (2013). Interacciones de las prácticas de mitigación. En: Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera. FAO, Roma, Italia. Pp 143-158.

Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology 166–167: 308-320.

Hook SE, Wright AD, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Hindawi Publishing Corporation, Archaea. doi:10.1155/2010/945785, Article ID 945785.

Hristov A N, Lee C, Hristova RA, Huhtanen P, Firkins J (2012) A meta-analysis of the variability in continuous culture rumen fermentation and digestibility data. Journal of Dairy Science 95: 5299–5307.

Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, et al. (2013). Special topics-Mitigation of methane and nitrous oxide emissions form animal operations; I. A review of enteric methane mitigation options. Journal of Animal Science 91: 5045-5069.

Johnson KA, Johnson DE (1995) Methane emissions from cattle. Journal of Animal Science 73: 2483-2492.

Kareru PG, Keriko JM, Kenji GM, Gachanja AN (2010) Short communication. Anti-termite and antimicrobial properties of paint made from Thevetia peruviana (Pers.) Schum. Oil extract. African Journal of Pharmacy and Pharmacology 4: 087-089.

Kong Y, He M, McAlister T, Seviour R, Forster R (2010) Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets. Applied Environmental Microbiology 76: 6933–6938.

Kumar S, Kumar P, Carro MD, Griffith GW, Dagar SS, Puniya M, et al. (2014) New aspects and strategies for methane mitigation from ruminants. Applied Microbiology Biotechnology 98: 31-44.

Lin B, Wang JH, Lu Y, Liang Q, Liu JX (2013) In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. Journal of Animal Physiology and Animal Nutrition 97: 1-9

Mao HL, Wang JK, Zhou YY, Liu JX (2010) Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science 129: 56-62.

Martin C, Morgavi DP, Doreau N (2010) Methane mitigation in ruminants: from microbe to farm scale. Animal 4: 351-365.

Martinez S, Madrid J, Hernandez F, Megias MD, Sotomayor JA, Jordan MJ (2006) Effect of thyme essential oils (Thymus hyemalis and Thymus zygis) and monensin on in vitro ruminal degradation and volatile fatty acid production. Journal Agricultural and Food Chemistry 54: 6598-6602.

Mohammed N, Ajisaka N, Lila ZA, Hara K, Mikuni K, Hara K et al (2004) Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. Journal of Animal Science 82: 1839-1846.

Nanon A, Suksombat W, Yang WZ (2014) Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Animal Feed Science and Technology 196: 50-59.

Odhiambo PO, Makobe, Boga MH, Miugai A, Schumacher M, Kiesecker H (2012) Phyto-chemical screening of wild types and tissue cultured yellow oleander Thevetia peruviana Pers.K.Schum in Kenya. Advances in Pharmacoepidemiology and Drug Safety. 1: 5. http://dx.doi.org/10.4172/2167-1052.1000120.

Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied Environmental Microbiology 78: 4271-4280.

Pell AN., Schofield P (1993) Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science.76: 1063-1073.

Polin RLA, Muro RA, Diaz GLH (2014) Aceites esenciales modificadores de perfiles de fermentación ruminal y mitigación de metano en rumiantes. Revisión. Revista Mexicana de Ciencias Pecuarias 5: 25-47.

Sallam SMA, Abdelgaleil SAM (2010). Efecto de diferentes niveles de aceite esencial de cítrico y su componente activo en la fermentación microbiana ruminal y la producción in vitro de metano. Revista Cubana de Ciencia Agrícola 44: 373-378.

Sallam SMA, Bueno ICS, Brigide P, Godoy PB, Vitti DMSS, Abdalla AL (2009) Efficacy of eucalyptus oil on in vitro rumen fermentation and methane production. Options Mediterraneennes 85: 267-272.

Soder KJ, Brito AF, Rubano MD (2013) Short communication: Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. Journal of Dairy Science 96: 2551–2556.

Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmuller A (2003) Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Letters in Applied Microbiology 37: 35-39.

Statgraphics Centurion XVI (2012). Statpoint Technologies Inc.Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales N, De Han C (2009) La producción pecuaria como uno de los principales protagonistas de la problemática pecuaria a nivel mundial. En: La larga sombra del ganado, problemas ambientales y opciones. FAO, Roma, Italia pp 2-4.

Storlien TM, Harstad OM, Narvaez N, Wang Y, McAllister TA (2012) Effects of different oils and plant extracts on in vitro ruminal methane production. Acta Agriculturae Scandinavica Section A 62: 300-304.

Theodorou MK, Williams BA, Dahona MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185-197.

Yanty NAM, Marikkar JMN, Long K (2011) Effect of varietal differences on composition and Thermal Characteristics of avocado oil. Journal American Oil Chemistry Society 88: 1997-2003.

Descargas

Publicado

2016-08-25

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Orozco-Durán, K. E., Herrera Camacho, J., Castelán-Ortega, O. A., Márquez Benavides, L., Buenrostro-Delgado, O., & Kú-Vera, J. C. (2016). Reducción de la metanogénesis ruminal in vitro con aceites vegetales de Thevetia peruviana y Persea americana. Ecosistemas Y Recursos Agropecuarios, 3(9), 335-344. https://doi.org/10.19136/era.a3n9.874

Artículos similares

1-10 de 87

También puede Iniciar una búsqueda de similitud avanzada para este artículo.