Measurement of forest attributes of coniferous species using digital drone photography

Authors

  • JUAN CARLOS TAMARIT URIAS Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
    • Casimiro Ordóñez Prado Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
      • Adrián Hernández Ramos Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
        • Enrique Buendía Rodríguez Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
          • Bossuet Gastón Cortés Sánchez Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias image/svg+xml
            • Adan Nava Nava Agropecuaria Santa Genoveva S.A.P.I. de C.V.

              DOI:

              https://doi.org/10.19136/era.a12nV.4586

              Keywords:

              photogrammetric cloud, metrics, parametric models, no parametric models, UAV

              Abstract

              The photogrammetric point cloud provides information that allows to estimate dendrometric and dasometric variables at the individual tree level with precision. The objective was to evaluate the potential of the geospatial point cloud generated by photogrammetry of aerial photographs captured by a low-cost drone in the estimation of dendrometric and dasometric variables in conifer species. With data on total height (At: m), basal area (AB: m2) and volume (Vol: m3) of 80 conifer trees measured in the field, linear (M1), exponential (M2), M1 with mixed effects (M3), M2 with mixed effects (M4), artificial neural networks (ANN-M5) and random forest (RF-M6) regression models were fitted to estimate At, AB and Vol based on height metrics (z), of the measured conifers, from the photogrammetric point cloud. The efficiency of the estimates was determined using the highest adjusted coefficient of determination (R2adj), the lowest root mean square error (RMSE), the Akaike Information Criterion (AIC), and Bias. The At was best estimated using the photogrammetric point cloud metrics, with R2adj ranging from 0.87 to 0.98, and RMSE of 1.64 and 0.61 m; M2 being the best. Regarding the estimation of AB and Vol, the RF-M6 model was the best, achieving an R2 of 0.77 and 0.77, and RMSE of 0.046 and 0.269, respectively. It is concluded that the photogrammetric 3D point cloud is an alternative for estimating forest variables at the tree level.

              Downloads

              Download data is not yet available.

              Author Biography

              • JUAN CARLOS TAMARIT URIAS, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

                INGENIERO FORESTAL CON ORIENTACION EN INDUSTRIAS

                MAESTRO EN CIENCIAS EN CIENCIAS FORESTALES

                DOCTOR EN CIENCIAS FORESTALES

                INVESTIGADOR TITULAR "C"

                 

              References

              Abuín, JR (2007) Regresión lineal múltiple. IdEyGdM-Ld Estadística, Editor, 32.

              Alaminos-Fernández, Antonio F (2023) Árboles de decisión en R con random forest. Universidad de Alicante. Obets Ciencia Abierta. Alicante: Limencop.

              Bohlin J, Wallerman J, Olsson H, Fransson JES (2012) Species-specific forest variable estimation using non-parametric modeling of multi-spectral photogrammetric point cloud data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, 387-391.

              Breiman L (2001) Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

              Briechle, M., Heinzel, J., & Koch, B. (2020). UAV-based photogrammetric point clouds for forest structure modeling in steep terrain: A case study from the Bavarian Forest National Park. Remote Sensing, 12(9), 1444. https://doi.org/10.3390/rs12091444

              Brito J, Coelho L (2007) Fotogrametría digital. CEP, 22290, 270.

              Buill PF, Núñez AM A, Lantada N, Prades VA (2016) Fotogrametría y videogrametría desde UAV para la captura de geoinformación en estudios geológicos. In Topografía y cartografía (Vol. 35, No. 174, pp. 47-53). http://hdl.handle.net/2117/102388

              Colohua-Citláhua B, Gómez-Guerrero A, Correa-Díaz A, Vargas-Hernández JJ (2024) Estructura y caracterización de rodales de Pinus hartwegii Lindl. en el Parque Nacional Pico de Orizaba. Revista Mexicana de Ciencias Forestales, 15(83), 28-54. https://doi.org/10.29298/rmcf.v15i83.1433

              Cordero MH (2017) El uso de fotogrametría de bajo coste en la creación de nubes de puntos aplicada a la arqueología comercial-the use of lowcost photogrammetry in the creation of point clouds applied to commercial archeology. Revista Otarq: Otras Arqueologías, (1), 311-324.

              Di Rienzo JA, Macchiavelli R, Casanoves F (2012) Modelos lineales mixtos. Aplicaciones en InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina http://www. infostat. com. ar.

              Filippelli SK, Lefsky MA, Rocca ME (2019) Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure. Remote Sensing of Environment, 224, 154–166. https://doi.org/10.1016/j.rse.2019.01.029

              Gallardo-Salazar JL, Pompa-García M, Aguirre-Salado CA, López-Serrano PM, Meléndez-Soto A (2020) Drones: tecnología con futuro promisorio en la gestión forestal. Revista Mexicana de Ciencias Forestales, 11(61), 27-50. https://doi.org/10.29298/rmcf.v11i61.794

              Haykin S (2009) Neural networks and learning machines (3rd ed.). Pearson Education.

              Herrero-Huerta M, Gonzalez-Aguilera D, Yang Y (2023) Structural component phenotypic traits from individual maize skeletonization by UAS-based structure-from-motion photogrammetry. Drones, 7(2), 108. https://doi.org/10.3390/drones7020108

              Islas-Gutiérrez F, Cruz-Juárez E, Buendía-Rodríguez E, Guerra-De la Cruz V, Pineda-Ojeda T, Flores-Ayala E, Acosta-Mireles M (2024) Ecuación alométrica para estimar biomasa aérea de árboles de Pinus hartwegii Lindl. A partir de datos lidar. Revista Fitotecnia Mexicana, 47(1), 70-79. https://doi.org/10.35196/rfm.2024.1.70

              Ivosevic B, Han YG, Kwon O (2017) Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry. Journal of Ecology and Environment, 41, 1-8. https://doi.org/10.1186/s41610-017-0029-0

              Kellner, J. R., Armston, J., Birrer, M., Cushman, K. C., Duncanson, L., Eck, C., & Zgraggen, P. (2019). New opportunities for forest remote sensing through ultra-high-density drone lidar. Surveys in Geophysics, 40, 959–977. https://doi.org/10.1007/s10712-019-09527-1

              Lee CKF, Song G, Muller-Landau HC, Wu S, Wright SJ, Cushman KC, Wu J (2023) Cost-effective and accurate monitoring of flowering across multiple tropical tree species over two years with a time series of high-resolution drone imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 201, 92-103. https://doi.org/10.1016/j.isprsjprs.2023.05.022

              Monárrez-González JC, Márquez-Linares MA, López Hernández JA, Pérez Verdín G, Quiñonez Barraza G, García Cuevas X (2024) Ecuaciones de volumen fustal-total y ahusamiento para especies maderables del ecosistema templado en Puebla, México. Revista Mexicana de Ciencias Forestales, 15(84), 4-28. https://doi.org/10.29298/rmcf.v15i84.1440

              Nuijten RJ, Coops NC, Watson C, Theberge D (2021) Monitoring the structure of regenerating vegetation using drone-based digital aerial photogrammetry. Remote Sensing, 13(10), 1942. https://doi.org/10.3390/rs13101942

              Ordóñez-Prado C, Valdez-Lazalde JR, Flores-Magdaleno H, Ángeles-Pérez G, de los Santos-Posadas HM, Buendía-Rodríguez E (2024) Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 30(2), 1-18. https://doi.org/10.5154/r.rchscfa.2023.06.040

              Ortiz-Reyes AD, Velasco-Bautista E, Correa-Díaz A, Ángeles-Pérez G (2021) Predicción de variables dasométricas mediante modelos lineales mixtos y datos de LiDAR aerotransportado. e-CUCBA, (17), 88-95.

              Ota T, Ogawa M, Mizoue N, Fukumoto K, Yoshida S (2017) Forest structure estimation from a UAV-based photogrammetric point cloud in managed temperate coniferous forests. Forests, 8(9), 343. https://doi.org/10.3390/f8090343

              Paneque-Gálvez J, McCall MK, Napoletano BM, Wich SA, Koh LP (2014) Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481-1507. https://doi.org/10.3390/f5061481

              Puliti, S., Ørka, H. O., Gobakken, T., & Næsset, E. (2015). Inventory of small forest areas using an unmanned aerial system. Remote Sensing, 7(8), 9632–9654. https://doi.org/10.3390/rs70809632

              Quiñonez-Barraza, G, Pompa-García M, Vivar-Vivar ED, Gallardo-Salazar JL, Hernández FJ, Rodríguez-Flores FD J, Hernández-Díaz J C (2023) Modeling biometrie attributes from tree height using unmanned aerial vehicles (UAV) in natural forest stands. Ingeniería e Investigación, 43(2), 1. https://doi.org/10.15446/ing.investig.98945

              R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

              Reyes-Zurita N, Rodríguez-Ortiz G, Enríquez-del Valle JR, Jiménez-Colmenares CL, Rincón-Ramírez JA (2022) Estimación de variables dasométricas en rodales bajo manejo forestal con vehículos aéreos no tripulados. FIGEMPA: Investigación y Desarrollo, 13(1), 22-31. https://doi.org/10.29166/revfig.v13i1.3299

              Roussel JR, Auty D, Coops NC, Tompalski P, Goodbody TR, Meador AS, Achim A (2020) lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061

              Scher CL, Griffoul E, Cannon CH. (2019) Drone-based photogrammetry for the construction of high-resolution models of individual trees. Trees, 33, 1385-1397. https://doi.org/10.1007/s00468-019-01866-x

              Vega-Puga MG, Romo-León JR, Castellanos AE, Castillo-Gámez RA, Garatuza-Payán J (2024) Use of unmanned aerial vehicles for estimating carbon storage in subtropical shrubland aboveground biomass. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 30(2). https://doi.org/10.5154/r.rchscfa.2023.06.043

              Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forest Ecology and Management, 361, 1–9. https://doi.org/10.1016/j.foreco.2015.11.021

              Downloads

              Published

              2025-12-15

              Issue

              Section

              SCIENTIFIC ARTICLE

              How to Cite

              TAMARIT URIAS, J. C., Ordóñez Prado, C., Hernández Ramos, A., Buendía Rodríguez, E., Cortés Sánchez, B. G., & Nava Nava, A. (2025). Measurement of forest attributes of coniferous species using digital drone photography. Ecosistemas Y Recursos Agropecuarios, 12(V). https://doi.org/10.19136/era.a12nV.4586

              Most read articles by the same author(s)