Survival and early growth of Pinus chiapensis across environmental gradients in Puebla and Veracruz
DOI:
https://doi.org/10.19136/era.a12n3.4739Keywords:
Acalocote, dieback failure, geographic origin, nursery growth, morphological variationAbstract
Due to land-use change, Pinus chiapensis has a fragmented distribution and small population size in Puebla and Veracruz, which may lead to inbreeding depression and compromise the species' continuity in its northern range. The objective was to determine the variation in morphological traits, survival, and early growth of seedlings from seven populations of P. chiapensis, and to propose conservation actions. Seedling morphological traits, survival, and early growth were assessed using germplasm collected from 125 trees across an elevation gradient of 664 to 1703 m a.s.l. These traits were correlated with bioclimatic variables of the population sites. Significant variation was found among populations. Hypocotyl height ranged from 2.74 to 4.13 cm, and the most frequent number of cotyledonary leaves was 7 or 8. At 15 months of age, plant height ranged from 25.7 to 56.5 cm, and stem base diameter from 2.59 to 3.90 mm across populations. Lower moisture was associated with fewer branches per plant, but longer cotyledonary leaves, greater plant height at 15 months, and a higher slenderness index (indicating lower vigor). Mortality risk was greater in progenies from lower-elevation areas, which are more exposed to global temperature increases. Conservation efforts should prioritize lower-elevation populations, and the seed source should be considered when planning reforestation programs with this species.
Downloads
References
Ahlinder J, Giles BE, García-Gil MR (2021) Life stage-specific inbreeding depression in long-lived Pinaceae species depends on population connectivity. Scientific Reports 11: 8834. https://doi.org/10.1038/s41598-021-88128-4
Ahrens CW, Murray K, Mazanec RA, Ferguson S, Jones A, Tissue, DT, Byrn M, Borevitz JO, Rymer PD (2024). Genomic determinants, architecture, and constraints in drought-related traits in Corymbia calophylla. BMC Genomics 25(1): 640. https://doi.org/10.1186/s12864-024-10531-8
Aldrete A, Sánchez-Velázquez JR, Aguilera-Rodríguez M, Rodríguez-Trejo DA (2024) Calidad de planta en viveros forestales. In: Aldrete A, Sánchez-Velázquez JR, Aguilera-Rodríguez M, Cibrián-Tovar D, García-Díaz SE (eds) Manual de buenas prácticas para el manejo de la salud de planta en viveros forestales. Universidad Autónoma Chapingo. México. pp. 19-39.
Antonio-Bautista A, Muñoz-Flores HJ, Castillo-Quiroz D, Sáenz-Reyes JT, Barrera-Ramírez R, Rueda-Sánchez A (2025) Germination and initial growth of half-sibling families of Pinus pseudostrobus Lind. outstanding in resin production. Australian Journal of Crop Science 19(7): 748-757. https://doi.org/10.21475/ajcs.25.19.07.p15
Astudillo-Sánchez CC, Villanueva-Diaz J, Endara-Agramont AR, Nava-Bernal GE, Gómez-Albores MA (2017) The influence of climate on Pinus hartwegii Lindl. recruitment at the alpine tree line ecotone in Monte Tláloc, México. Agrociencia 51(1): 105-118. https://www.redalyc.org/pdf/302/30249773001.pdf
Barrera-Ramírez R, Vargas-Hernández JJ, Escobar-Alonso S, Pérez-Luna A, López-Upton J (2024) Variación intraespecífica en tolerancia al frío en progenies de Pinus pseudostrobus en dos sitios de evaluación. Madera y Bosques 30(2): e3022548. https://doi.org/10.21829/myb.2024.3022548
Burbidge JB, Magee L, Robb AL (1988) Alternative transformation to handle extreme values of the dependent variable. Journal of the American Statistical Association 83(401): 123–127. https://doi.org/10.1080/01621459.1988.10478575
Capilla-Dinorin E, López-Upton J, Jiménez-Casas M, Rebolledo-Camacho V (2021) Características reproductivas y calidad de semilla en poblaciones fragmentadas de Pinus chiapensis (Martínez) Andresen. Revista Fitotecnia Mexicana 44(2): 211-219. https://doi.org/10.35196/rfm.2021.2.211
Castellanos-Acuña D, Sáenz-Romero C, Lindig-Cisneros R, Sánchez-Vargas N, Lobbit P, Montero-Castro J (2013) Variación altitudinal entre especies y procedencias de Pinus pseudostrobus, P. devoniana y P. leiophylla. Ensayo de vivero. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 19(3): 399-411. https://doi.org/10.5154/r.rchscfa.2013.01.002
Castellanos-Acuña D, Lindig-Cisneros R, Sáenz-Romero C (2015) Altitudinal assisted migration of Mexican pines as an adaptation to climate change. Ecosphere 65(1): 2. https://doi.org/10.1890/ES14-00375.1
del Castillo RF, Acosta S (2002) Ethnobotanical notes on Pinus strobus var. chiapensis. Anales del Instituto de Biología, Serie Botánica 73: 319-327
del Castillo RF, Trujillo S (2008) Effect of inbreeding depression on outcrossing rates among populations of a tropical pine. New Phytologist 177: 517-524. https://doi.org/10.1111/j.1469-8137.2007.02260.x
del Castillo RF, Trujillo-Argueta S, Sánchez-Vargas NM, Newton AC (2010) Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine. Evolutionary Applications 4(4): 574-588. https://doi.org/10.1111/j.1752-4571.2010.00177.x
Dvorak WS, Donahue JK, Vasquez JA (1996) Provenance and progeny results for the tropical white pine, Pinus chiapensis, at five and eight years of age. New Forests 12(2): 125-140. https://doi.org/10.1007/BF00036625
Escobar-Alonso S, Vargas-Hernández JJ, López-Upton J, García-Campusano F, Jiménez-Casas M, Cruz-Huerta N (2024) Genetic variation and phenotypic plasticity in the seasonal shoot growth pattern of Pinus pseudostrobus. New Forests 55: 1379-1398. https://doi.org/10.1007/s11056-024-10040-2
Fierros-Mateo R, de los Santos-Posadas HM, Fierros-González MA, Cruz-Cobos F (2017) Crecimiento y rendimiento maderable en plantaciones de Pinus chiapensis (Martínez) Andresen. Agrociencia 51(2): 201-214.
Flores A, Climent J, Pando V, López-Upton J, Alía R (2018) Intraspecific variation in pines from the trans-Mexican volcanic belt grown under two watering regimes: implications for management of genetic resources. Forest 9(2): 71. https://doi.org/10.3390/f9020071
Fuentes-Amaro SL, Rodríguez-Laguna R, Razo-Zárate R, Meza-Rangel J, Jiménez-Casas M (2021) Variación altitudinal en emergencia y crecimiento inicial de plantas de Pinus patula. Revista Fitotecnia Mexicana 44(4): 655-660. https://doi.org/10.35196/rfm.2021.4.655
Herrera-Hernández R, López-Upton J, Muñoz-Gutiérrez L, Ramírez-Herrera C (2024) Germinación y características de plántulas de Pinus montezumae Lamb. en poblaciones del centro de México. Revista Fitotecnia Mexicana 47(2): 199-207. https://doi.org/10.35196/rfm.2024.2.199
Iakovoglou V, Takos I, Pantazi G, Pipsou A, Neofotistou M. (2020) Growth responses of seedlings produced by parent seeds from specific altitudes. Journal Forestry Research 31: 2121-2127 https://doi.org/10.1007/s11676-019-01030-8
Juárez-Agis A, López-Upton J, Vargas-Hernández JJ, Sáenz-Romero C (2006) Variación geográfica en la germinación y crecimiento inicial de plántulas de Pseudotsuga menziesii de México. Agrociencia 40(6): 783-792.
Landis T, Tinus R, McDonald S, Barnett J (1990). Containers and growing media. Vol. 2. The Container Tree Nursery Manual. USDA Forest Service. Washington DC, USA. 67p.
Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2016) SAS System for Mixed Models (2a ed.), SAS Institute Inc. 828p.
Newton AC, Allnut TR, Dvorak WC, del Castillo RF, Ennos RA (2002) Patterns of genetic variation in Pinus chiapensis, a threatened Mexican pine, detected by RAPD and mitochondrial DNA RFLP markers. Heredity 89: 191-198. https://doi.org/10.1038/sj.hdy.6800113
Orquera RM, Marinoni L, Velazquez MA, Pensiero JF, López LD, Vega C, Zabala JM (2025) Design of seed transfer zones and assessment of germplasm collections of Neltuma alba for reforestation and afforestation purposes in Argentina. New Forests 56(1): 10. https://doi.org/10.1007/s11056-024-10072-8
Pérez-Luna A, Wehenkel C, Prieto-Ruíz JÁ, López-Upton J, Hernández-Díaz JC (2020) Survival of side grafts with scions from pure species Pinus engelmannii Carr. and the P. engelmannii × P. arizonica Engelm. var. arizonica hybrid. PeerJ 8: e8468. https://doi.org/10.7717/peerj.8468
Pérez-Luna A, López-Upton J, Prieto-Ruíz JA, Madrid-Aispuro RE (2024) Supervivencia y control genético sobre características fenotípicas de un ensayo de progenies de Pinus patula. Revista Fitotecnia Mexicana 47(3): 301-309. https://doi.org/10.35196/rfm.2024.3.30
Sáenz-Romero C, Lindig-Cisneros RA, Joyce DG, Beaulieu J, Bradley JStC, Jaquish BC (2016) Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo, Serie Ciencias Forestales y del Ambiente 22(3): 303-323. https://doi.org/10.5154/r.rchscfa.2014.10.052
Sánchez-Mendoza JL, Jiménez-Casas M, Ramírez-Herrera C, Viveros-Viveros H (2023) Calidad de semilla y crecimiento de planta en poblaciones y altitudes de Pinus hartwegii Lindl. Revista Mexicana de Ciencias Forestales 14(75): 143-165. https://doi.org/10.29298/rmcf.v14i75.1297
SAS (2022) SASv9. The SAS Institute Inc. Cary, North Carolina, USA. 378p.
Syring J, Willyard A, Cronn R, Liston A (2007) Multiple nuclear loci reveal the distinctiveness of the threatened, Neotropical Pinus chiapensis. Systematic Botany 32(4): 794-802. https://doi.org/10.1600/036364407783390836
Viveros-Viveros H, Sáenz-Romero C, López-Upton J, Vargas-Hernández JJ (2005) Variación genética altitudinal en el crecimiento inicial de plantas de Pinus pseudostrobus Lindl. en campo. Agrociencia 39(5): 575-587.
Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. Forest Science 42(1): 102-117. https://doi.org/10.1093/forestscience/42.1.102
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).