Warm and dry conditions as triggers of Dendroctonus mexicanus Hopkins Outbreaks
DOI:
https://doi.org/10.19136/era.a12nV.4306Keywords:
bark beetles, Pinus cembroides, climate change, climate oscillations, temperate forestAbstract
The association of Dendroctonus mexicanus with the warm and cold phases of the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO) was evaluated, along with its relationship with infested area and the variables: mean, maximum, and minimum temperature, and precipitation in Pinus cembroides forests of Aramberri, Nuevo León, during 2015-2020. The affected area was estimated using official reports and Sentinel-2 delineation through unsupervised classification and photointerpretation. Monthly temperature and precipitation series, together with SOI, PDO, and AMO, were analyzed using Pearson correlations with lags of 0-11 months (α = 0.05) and phase-based composites. Total affected area was 2,058.4 ha; 2017 accounted for 1 054.71 ha (51.2%), under the influence of the 2016-2017 La Niña episode and negative PDO. Months with infestation exhibited Tmax values of 25.8-29.2 °C (median ≈ 27.1 °C) and Tmin of 14.7-17.9 °C (median ≈ 17.3 °C). Tmax correlated positively with SOI and negatively with PDO, while Tmin showed weaker negative correlations with PDO. Precipitation exhibited isolated significant associations, and AMO showed no relevant signal. Most infestation occurred in spring summer and was distributed in discrete outbreaks concentrated near the arid boundary of the Mexican Altiplano.
Downloads
References
Armendáriz-Toledano F, Zúñiga G (2017) Illustrated key to species of genus Dendroctonus (Curculionidae: Scolytinae) occurring in Mexico and Central America. Journal of Insect Science 17: 1-15. https://doi.org/10.1093/jisesa/iex009
Bai M, Wang X, Yao Q, Fang K (2022) ENSO modulates interaction between forest insect and fire disturbances in China. Natural Hazards Research 2: 138-146. https://doi.org/10.1016/j.nhres.2022.04.001
Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience 60: 602-613. https://doi.org/10.1525/bio.2010.60.8.6
Bernal AA, Kane JM, Knapp EE, Zald HSJ (2023) Tree resistance to drought and bark beetle-associated mortality following thinning and prescribed fire treatments. Forest Ecology and Management 530: 120758. https://doi.org/10.1016/j.foreco.2022.120758
Bravo-Cabrera JL, Azpra-Romero E, Zalarruqui-Such V, Gay-García C (2017) Effects of El Niño in Mexico during rainy and dry seasons: An extended treatment. Atmósfera 30: 221-232. https://doi.org/10.20937/ATM.2017.30.03.02
Cavazos T (1999) Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Climate 12: 1506-1523.
Cervantes-Martínez R, Cerano-Paredes J, Sánchez-Martínez G, Villanueva-Díaz J, Esquivel-Arriaga G, Cambrón-Sandoval VH, Méndez-González J, Castruita-Esparza LU (2019) Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25: 269-290. https://doi.org/10.5154/r.rchscfa.2019.01.006
Cuéllar-Rodríguez G, Equihua-Martínez A, Villa-Castillo J, Estrada-Venegas EG, Méndez-Montiel T, Romero-Nápoles J (2013) Análisis espacio-temporal de bosques de Pinus cembroides atacados por Dendroctonus mexicanus. Revista Mexicana de Ciencias Forestales 4: 42-49. https://doi.org/10.29298/rmcf.v4i17.430
Cuéllar-Rodríguez G, Equihua-Martínez A, Estrada-Venegas E, Méndez-Montiel T, Villa-Castro J, Romero-Nápoles J (2012) Fluctuación poblacional de Dendroctonus mexicanus y su correlación con variables climáticas. Boletín del Museo de Entomología de la Universidad del Valle 13: 12-19. https://doi.org/10.17151/bmeuv.2012.13.2.2
Fuentes-Franco R, Giorgi F, Coppola E, Kucharski F (2015) The role of ENSO and PDO in variability of winter precipitation over North America. Climate Dynamics 46: 3259-3277. https://doi.org/10.1007/s00382-015-2767-y
Gómez-Pineda E, Hammond WM, Trejo-Ramírez O, Gil-Fernández M, Allen CD, Blanco-García A, Sáenz-Romero C (2022) Drought years promote bark beetle outbreaks in Mexican forests. Forest Ecology and Management 505: 119944. https://doi.org/10.1016/j.foreco.2021.119944
Hanley DE, Bourassa MA, O’Brien JJ, Smith SR, Spade ER (2003) A quantitative evaluation of ENSO indices. Journal of Climate 16: 1249-1258. https://doi.org/10.1175/1520-0442(2003)161249
Hart SJ, Veblen TT, Eisenhart KS, Jarvis J, Kulakowski D (2014) Drought induces spruce beetle outbreaks across Colorado. Ecology 95: 930-939. https://doi.org/10.1890/13-1810.1
IPCC (2021). Cambio climático 2021: Bases físicas. Resumen para responsables de políticas. Contribución del Grupo de Trabajo I al Sexto Informe de Evaluación del IPCC. Cambridge University Press.
López-Gómez V (2017) Los escarabajos descortezadores: responsables de la pérdida de masa forestal en México. Revista Mexicana de Ciencias Forestales 8: 7-21. https://doi.org/10.29298/rmcf.v8i39.97
Magaña VO, Vázquez JL, Pérez JL, Pérez JB (2003) Impact of El Niño on precipitation in Mexico. Geofísica Internacional 42: 313-330. https://doi.org/10.22201/igeof.00167169p.2003.42.3.394
Mantua NJ, Hare SR, Zhang Y, Wallace J, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78: 1069-1079.
Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. Journal of Oceanography 58: 35-44. https://doi.org/10.1023/A:1015820616384
Martínez-Rincón S, Valdez-Lazalde JR, De los Santos-Posadas HM, Sánchez-Martínez G (2022) Risk of infestations by Dendroctonus mexicanus and D. frontalis in forests of Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente 28: 37-55. https://doi.org/10.5154/r.rchscfa.2020.11.069
Martínez-Sifuentes AR, Villanueva-Díaz J, Estrada-Ávalos J (2020) Runoff reconstruction with tree rings in Sonora, Mexico. iForest 13: 98-106. https://doi.org/10.3832/ifor3190-013
McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the U.S. PNAS 101: 4136-4141. https://doi.org/10.1073/pnas.0306738101
Méndez-Encina FM, Méndez-González J, Cerano-Paredes J (2020) Actual and potential distribution of Dendroctonus mexicanus under climate change scenarios. Madera y Bosques 26: e2622002. https://doi.org/10.21829/myb.2020.2622002
Méndez-González J, Ramírez-Leyva A, Cornejo-Oviedo E, Zárate-Lupercio A, Cavazos T (2010) Teleconexiones de la PDO a la precipitación y temperatura en México. Investigaciones Geográficas 73: 57-70.
Mijares-Fajardo R, Lobato-Sánchez R, Patiño-Gómez C, Guevara-Polo DE (2024) Atlantic and Pacific SST correlations with precipitation over northern Mexico. Atmósfera 38: 214-234. https://doi.org/10.20937/ATM.53257
Morales-Rangel A, Cambrón-Sandoval VH, Soto-Correa JC, Wallace-Jones R, Obregón-Zúñiga JA (2018) Temperature effect on Dendroctonus species under climate change. Acta Zoológica Mexicana 34: 1-18. https://doi.org/10.21829/azm.2018.3412141
Nardi L, Camarero JJ, Battipaglia G, de Luis M (2022) Increasing wildfire occurrence and insect outbreaks linked to climate warming in pine forests. Forest Ecology and Management 505: 119930. https://doi.org/10.1016/j.foreco.2021.119930
Pavia EG, Graef F, Reyes J (2006) PDO-ENSO effects on the climate of Mexico. Journal of Climate 19: 6433-6438. https://doi.org/10.1175/JCLI4045.1
Pérez-Miranda R, González-Hernández A, Velasco-Bautista E, Romero-Sánchez ME, Arriola-Padilla VJ, Acosta-Mireles M, Carrillo-Anzures F (2021) Temporal analysis of the distribution of D. mexicanus in Mexico. Revista Mexicana de Ciencias Forestales 12: 27-55. https://doi.org/10.29298/rmcf.v12i67.1079
Ponce-Calderón LP, Villanueva-Díaz J, Rodríguez-Trejo DA, Bilbao BA, Álvarez-Gordillo GDC (2023) Climate response of Pinus oocarpa radial growth. iForest 16: 174-181. https://doi.org/10.3832/ifor4112-016
Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Current Forestry Reports 4: 35-50. https://doi.org/10.1007/s40725-018-0075-6
Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of bark beetle eruptions. BioScience 58: 501-518. https://doi.org/10.1641/B580607
Rubio-Ugalde DJ, Cambrón-Sandoval VH, Vergara-Pineda S (2017) Coleópteros depredadores asociados al monitoreo de descortezadores. Entomología Mexicana 4: 186-191.
Rzedowski J (1978) Vegetación de México. Limusa. México. 505p.
Salinas-Moreno Y, Mendoza G, Barrios MA, Cisneros R, Macías-Sámano J, Zúñiga G (2004) Areography of the genus Dendroctonus in Mexico. Journal of Biogeography 31: 1163-1177.
Sáenz-Romero C, Cambrón-Sandoval VH, Hammond W, Méndez-González J, Luna-Soria H, Macías-Sámano JE, Gómez-Romero M, Trejo-Ramírez O, Allen CD, Gómez-Pineda E, Del-Val E (2023) Abundance of D. frontalis and D. mexicanus along altitudinal transects in Mexico. PLOS One 18: e0288067. https://doi.org/10.1371/journal.pone.0288067
Sánchez-Salas JA, Torres-Espinosa LM (2007) Biología y hábitos del descortezador Dendroctonus mexicanus Hopkins y estrategias de control en Pinus teocote en Nuevo León. CIRNE, INIFAP. Folleto Técnico No. 29. Saltillo, Coahuila, México. 35p.
Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2014) North American drought: Reconciling observed changes in hydroclimate with projections. Journal of Climate 27: 4581-4603. https://doi.org/10.1175/JCLI-D-13-00480.1
Schlesinger M, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367: 723-726. https://doi.org/10.1038/367723a0
Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence. Ecological Applications 15: 2000-2014. https://doi.org/10.1890/04-1579
Sherriff RL, Berg EE, Miller AE (2011) Climate variability and spruce beetle outbreaks in Alaska. Ecology 92: 1459-1470. https://doi.org/10.1890/10-1118.1
Sosa-Díaz L, Méndez-González J, García-Aranda MA, Cambrón-Sandoval VH, Villarreal-Quintanilla JA, Ruiz-González CG, Montoya-Jiménez JL (2018) Distribución potencial de plagas en bosques de coníferas de México. Revista Mexicana de Ciencias Forestales 9: 187-208. https://doi.org/10.29298/rmcf.v9i47.159
Soto-Correa JC, Girón-Gutiérrez D, Cambrón-Sandoval VH (2020) Coloración y abundancia de Dendroctonus mexicanus en cuatro regiones de México. Revista Mexicana de Ciencias Forestales 11: 163–184. https://doi.org/10.29298/rmcf.v11i59.668
Soto-Correa JC, Hernández-Muñoz G, Cambrón-Sandoval VH (2022) Effect of climatic variables on Dendroctonus mexicanus from Hidalgo forests. Revista Mexicana de Ciencias Forestales 13: 31–55. https://doi.org/10.29298/rmcf.v13i69.1198
Tran JK, Ylioja T, Billings RF, Régnière J, Ayres MP (2007) Impact of minimum winter temperatures on Dendroctonus frontalis dynamics. Ecological Applications 17: 882-899. https://doi.org/10.1890/06-0512
Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters 24: 3057-3060. https://doi.org/10.1029/97GL03092
Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. Journal of Climate 14: 1697-1701.
Vázquez-Ochoa MF, Sánchez-Velásquez LR, Hernández-Vargas G, Ibarra-Zavaleta SP, Ruiz-Montiel C, Pineda-López MR (2022) Presencia de Dendroctonus en pinos del Parque Nacional Cofre de Perote. Revista Mexicana de Biodiversidad 93: e934048. https://doi.org/10.22201/ib.20078706e.2022.93.4048
Zhang W, Jiang F, Stuecker MF, Jin FF, Timmermann A (2021) Spurious North Tropical Atlantic precursors to El Niño. Nature Communications 12: 3096. https://doi.org/10.1038/s41467-021-23411-6
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).