Tolerance to salinity in irrigation water in vinca (Catharanthus roseus L.)

Authors

  • Elva Ixchel Landeros Ortíz Universidad Autónoma Agraria Antonio Narro image/svg+xml
    • Luis Alonso Valdez Aguilar Universidad Autónoma Agraria Antonio Narro image/svg+xml
      • Martín Cadena Zapata Universidad Autónoma Agraria Antonio Narro image/svg+xml
        • Irán Alia Tejacal Universidad Autónoma del Estado de Morelos image/svg+xml
          • Pedro Pérez Rodríguez Universidad Autónoma Agraria Antonio Narro image/svg+xml
            • Daniela Alvarado Camarillo Universidad Autónoma Agraria Antonio Narro image/svg+xml

              DOI:

              https://doi.org/10.19136/era.a13n1.4771

              Keywords:

              Abiotic stress, Ornamentals, Quality of irrigation water, Electric conductivity

              Abstract

              Salinity represents a challenge for farmers, especially those growing ornamental crops, because the esthetic appearance of the plants determines their commercial value. Vinca is a plant of ornamental interest but also for its high pharmaceutical value as it produces valuable compounds with medicinal properties. In the present study, the effect of salinity by NaCl in the nutrient solution on biomass accumulation and its effect on antioxidant capacity and nutrient status in two cultivars, Polka Dot and Valiant, of vinca was evaluated. Salinity from NaCl affected the growth and nutrient absorption of Polka Dot, making this cultivar more sensitive to salt stress. The Valiant cultivar demonstrated tolerance to salinity even at a concentration of 35 mmol of NaCl as its growth remained unaffected. Salinity caused a nutrient imbalance in Polka dot as the foliar concentration of Ca and K decreased. Polka dot, despite being more sensitive to salinity, produced a higher concentration of flavonoids and had greater antioxidant activity.

              Downloads

              Download data is not yet available.

              References

              Acosta-Motos J, Díaz-Vivancos P, Álvarez S, Fernández N, Sánchez-Blanco MJ, Hernández JH. (2014) Mecanismos de tolerancia desarrollados por plantas de Myrtus communis L. y Eugenia myrtifolia L. a distintos niveles de salinidad. VI Jornadas Ibéricas de Horticultura Ornamental, Actas de Horticultura nº 68. 2016:130–135. ISBN 978846173029‐9

              Akyol TY, Yilmaz O, Uzilday B, Uzilday RÖ, Türkan I. (2020) Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany 44:1–13. https://doi.org/10.3906/bot-1911-15

              Arshad M, Saqib M, Akhtar J, Ashgar M. (2012) Effect of calcium on the salt tolerance of different wheat (Triticum aestivum L.) genotypes. Pakistan Journal of Agricultural Sciences 49: 497–504.

              Arvouet-Grand A, Vennat B, Pourrat A, Legret, PJJB. (1994) Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique 49:462-468.

              Barkla B J, Vera-Estrella R, Balderas Omar Pantoja E. (2007). Mecanismos de tolerancia a la salinidad en plantas. Biotecnología 14: 263–272.

              Benzie IF, Strain JJ. (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239: 70-76. https://doi.org/10.1006/abio.1996.0292

              Cabrera R, Solis A, Cuervo W. (2017) Tolerancia y manejo de salinidad, pH y alcalinidad en cultivos de flores. In: Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel. Editorial Universidad Nacional de Colombia, Bogotá, Colombia, 63-73.

              Cartmill AD, Valdez-Aguilar LA, Cartmill DL, Volder A, Alarcon A. (2013) Arbuscular mycorrhizal colonization does not alleviate sodium chloride-salinity stress in vinca [Catharanthus roseus (L.) G. Don]. Journal of Plant Nutrition 36: 164-178. https://doi.org/10.1080/01904167.2012.738275

              Cassaniti, C, Romano D, Flowers TJ. (2012) The response of ornamental plants to saline irrigation water. In: M. Garcia-Garizabal (ed.), Irrigation-water management, pollution and alternative strategies IntechOpen 131:158.

              Choi HS, Cai X, Gu M. (2018) Effects of salinity and drought stress on photosynthesis, growth, and development of ornamental plants. In: M. Pessarakli (ed.) Handbook of photosynthesis. CRC Press. pp. 651–661. https://doi.org/10.1201/9781315372136

              Coskun D, White PJ. (2023) Ion-uptake mechanisms of individual cells and roots: Short-distance transport. In: P. Marschner (ed.), Marschner’s mineral nutrition of plants. Academic Press. pp. 11–71. https://doi.org/10.1016/C2009-0-63043-9

              Cramer GR, Läuchli A, Polito VS. (1985) Displacement of Ca²⁺ by Na⁺ from the plasmalemma of root cells: A primary response to salt stress? Plant Physiology 79: 207–211. https://doi.org/10.1104/pp.79.1.207

              Dai JL., Duan LS, Dong HZ. (2014) Improved nutrient uptake enhances cotton growth and salinity tolerance in saline media. Journal of Plant Nutrition 37: 1269–1286. https://doi.org/10.1080/01904167.2014.881869

              De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, de Jesús Sánchez-Colín M, Muñoz-Muñiz OD. (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil 349: 367–376. https://doi.org/10.1007/s11104-011-0883-y

              Ding Y, Luo W, Xu G. (2006) Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Annals of Applied Biology 149: 111–123. https://doi.org/10.1111/j.1744-7348.2006.00080.x

              Dubey A, Tiwari D, Srivastava K, Prakash O, Kushwaha, R. (2020) A discussion on vinca plant. Journal of Pharmacognosia and Phytochemistry 9: 27-31.

              Ehsan N, Nawaz R, Ahmad S, Arshad M, Umar M, Mahmood R. (2016) Use of ornamental plant ‘Vinca’ (Vinca rosea L.) for remediation of lead-contaminated soil. Journal of Biodiversity and Environmental Sciences 8: 46-54.

              Escalona A, Salas-Sanjuán MC, Dos Santos C, Guzmán M. (2014) Efecto de aguas salinas sobre el crecimiento, concentración y relaciones de iones en Zinnia elegans y Tagetes erecta para su uso en jardinería urbana. ITEA Información Técnica Económica Agraria 110: 325–334. https://dx.doi.org/10.12706/itea.2014.020

              Garcia-Caparros P, Lao MT. (2018) The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae 240: 430–439. https://doi.org/10.1016/j.scienta.2018.06.022

              Guzman MR, Marques I. (2023) Effect of varied salinity on marigold flowers: Reduced size and quantity despite enhanced antioxidant activity. Agronomy 13: 3076. https://doi.org/10.3390/agronomy13123076

              Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, ... Fujita M. (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences 22: 9326. https://doi.org/10.3390/ijms22179326

              Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin F. (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum 33: 987–999. https://doi.org/10.1007/s11738-010-0631-6

              Jan R, Asaf S, Numan M, Lubna, Kim KM. (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11: 1–31. https://doi.org/10.3390/agronomy11050968

              Kausar A, Gull M. (2019) Influence of salinity stress on the uptake of magnesium, phosphorus, and yield of salt susceptible and tolerant sorghum cultivars (Sorghum bicolor L.). Journal of Applied Biology and Biotechnology 7: 53–58. https://doi.org/10.7324/JABB.2019.70310

              Khosh Kholgh Sima NA, Ahmad ST, Alitabar RA, Mottaghi A, Pessarakli M. (2012) Interactive effects of salinity and phosphorus nutrition on physiological responses of two barley species. Journal of Plant Nutrition 35: 1411–1428. https://doi.org/10.1080/01904167.2012.684132

              Marković M, Šoštarić J, Kojić A, Popović B, Bubalo A, Bošnjak D, Stanisavljević A. (2022) Zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) responses to salinity stress. Water 14: 1066. https://doi.org/10.3390/w14071066

              Mata Fernández I, Rodríguez-Gamiño ML, López-Blanco J, Vela-Correa G. (2014) Dinámica de la salinidad en los suelos. Revista Digital del Departamento El Hombre y su Ambiente, 1: 26–35.

              Negrão S, Schmöckel SM, Tester M. (2017) Evaluating physiological responses of plants to salinity stress. Annals of Botany 119: 1–11. https://doi.org/10.1093/aob/mcw191

              Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R. (2015) Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): The two faces of a versatile herb. Scientific World Journal 2015: 1–19. https://doi.org/10.1155/2015/982412

              Nieves-Cordones M, Al Shiblawi FR, Sentenac H. (2016) Roles and transport of sodium and potassium in plants. In: A Sigel, H Sigel, RKO Sigel (eds.), The alkali metal ions: Their role for life. Springer International Publishing. pp. 291–324. https://doi.org/10.1007/978-3-319-21756-7

              Orosco-Alcalá BE, Núñez-Palenius HG., Pérez-Moreno L, Valencia-Posadas M, Trejo-Téllez LI, Díaz-Serrano FR, Ruiz-Nieto JE, Abraham-Juárez MR. (2018) Tolerancia a salinidad en plantas cultivadas: Una visión agronómica. Agro Productividad 11: 51-57. https://doi.org/10.22004/ag.econ.352950

              Pérez K, Sandoval E. (2014) Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexagro JDC 4: 11–22. https://revista.jdc.edu.co/conexagro/article/view/206

              Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

              Rhodes R, Miles N, Hughes JC. (2018) Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research 223: 1–11. https://doi.org/10.1016/j.fcr.2018.01.001

              Singleton VL, Orthofer R, Lamuela-Raventós RM. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

              Strzepek K, Boehlert B. (2010) Competition for water for the food system. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2927–2940. https://doi.org/10.1098/rstb.2010.0152

              Tang RJ, Luan S. (2017) Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Current Opinion in Plant Biology 39: 97–105. https://doi.org/10.1016/j.pbi.2017.06.009

              Thakur M, Bhattacharya S, Khosla PK, Puri S. (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12: 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

              Velasco-Muñoz JF, Aznar-Sánchez JA, Belmonte-Ureña LJ, Román-Sánchez IM. (2018) Sustainable water use in agriculture: A review of worldwide research. Sustainability 10: 1084. https://doi.org/10.3390/su10041084

              Villarino GH, Mattson NS. (2011) Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology 21: 539–545. https://doi.org/ 10.21273/HORTTECH.21.5.539

              Vrabec R, Drašar P, Opletal L, Kosturko Š, Blunden G, Cahlíková L. (2025) Alkaloids from the genus Vinca L. (Apocynaceae): A comprehensive biological and structural review. Phytochemistry Reviews. https://doi.org/10.1007/s11101-025-10102-z

              Whitam FF, Blaydes DF, Devlin RM. (1971) Experiments in Plant Physiology. Van Nostrand Rteinhold Company. New York, USA. 245 pp.

              Xie K, Cakmak I, Wang S, Zhang F, Guo S. (2021) Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal 9: 249–256. https://doi.org/10.1016/j.cj.2020.10.005

              Xie W, Yang J, Gao S, Yao R, Wang X. (2022) The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils. Water 14: 2804. https://doi.org/10.3390/w14182804

              Yahyazadeh M, Meinen R, Hänsch R, Abouzeid S, Selmar D. (2018) Impact of drought and salt stress on the biosynthesis of alkaloids in Chelidonium majus L. Phytochemistry 152: 204–212. https://doi.org/10.1016/j.phytochem.2018.05.007

              Zaman M, Shahid SA, Heng L. (2018). Irrigation water quality. In: M Zaman, SA Shahid, L Heng (eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques Springer International Publishing. pp. 113–131. https://doi.org/10.1007/978-3-319-96190-3_5

              Published

              2026-01-29

              Issue

              Section

              SCIENTIFIC ARTICLE

              How to Cite

              Landeros Ortíz, E. I., Valdez Aguilar, L. A., Cadena Zapata, M., Alia Tejacal, I., Pérez Rodríguez, P., & Alvarado Camarillo, D. (2026). Tolerance to salinity in irrigation water in vinca (Catharanthus roseus L.). Ecosistemas Y Recursos Agropecuarios, 13(1). https://doi.org/10.19136/era.a13n1.4771

              Most read articles by the same author(s)