Trichoderma species from rhizospheric soil and Agave potatorum tissues
DOI:
https://doi.org/10.19136/era.a12n3.4270Keywords:
Hydrolytic enzyme, tobalá maguey, morphology, taxonomy, semiarid soilAbstract
Fungi of genus Trichoderma are found in different habitats. The interest in their study is by the secondary metabolites production. Although the favorable conditions for their growth are in relative humidity greater than 70%, the discovery of these fungi in semiarid zones exposes the plasticity of native species to adapt and the opportunity to learn about their mechanisms of action. The research objective was to characterize the morphology, taxonomy and enzymatic biochemistry of Trichoderma species from rhizospheric soil and A. potatorum tissues. In 2023, soil and plants of A. potatorum were collected in Chichicapam, Oaxaca. From these samples, four Trichoderma species were identified and characterized by morphology, taxonomy, growth speed, conidia production and exoglucanases and chitinases activity. The species had significant differences in morphometric, taxonomic and enzymatic characters. T. asperellum, T. yunnanense and T. lentiforme were identified as fungi of A. potatorum soil and tissue.
Downloads
References
Allende-Molar R, Báez-Parra KM, Salazar-Villa E, Rojo-Báez I (2022) Biodiversidad de Trichoderma spp. en México y su potencial de utilización en la agricultura. Tropical and Subtropical Agroecosystems 25: 088. https://doi.org/10.56369/tsaes.4297
Alfiky A, Weisskopf L (2021) Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. Journal of Fungi 7: 61. https://doi.org/10.3390/jof7010061
Arrazate-Argueta VC, Martínez-Bolaños M, Ayala-Escobar V, Avendaño-Arrazate CH, Hernández-Morales J (2019) Diversidad morfológica y fisiológica de cepas nativas de Trichoderma spp. en suelos cacaoteros de México. Agroproductividad 12(12): 3-10. https://doi.org/10.32854/agrop.vi0.1529
Bouyoucos GJ (1936) Directions for making mechanical analysis of soils by the hydrometer method. Soil Science 4: 225-228.
Cabral-Miramontes JP, Olmedo-Monfil V, Lara-Banda M, Zuñiga-Romo ER, Aréchiga-Carvajal ET (2022) Promotion of plant growth in arid zones by selected Trichoderma spp. strains with adaptation plasticity to alkaline pH. Biology 11: 15. https://doi.org/10.3390/biology11081206
Chaparro AE, Castillo CD (2019) Especies de Trichoderma productoras de β-galactosidasa en suelos de cultivo de Tacna, Perú. Revista Ciencia y Tecnología para el Desarrollo-UJCM 5(9): 27-37. http://dx.doi.org/10.37260/rctd.v5i9.139
Chairman E, Bird G, Fisher K, Hickey K, Lewis F, Line R, Rickard S (1978) Methods for evaluating plant fungicides, nematicides and bactericides. The American Phytopathological Society. Minneapolis, USA. 141p.
Chóez-Guaranda I, Espinoza-Lozano F, Reyes-Araujo D, Romero C, Manzano P, Galarza L, Sosa D (2023) Characterization of Trichoderma spp. extracts with antifungal activity against cocoa pathogens. Molecules 28: 3208. https://doi.org/10.3390/molecules28073208
COMERCAM (2024) Informe estadístico 2024. Consejo Mexicano Regulador de la Calidad del Mezcal A. C. https://comercam-dom.org.mx/wp-content/uploads/2024/04/PUBLICO_INFORME_2024.pdf. Fecha de consulta: 29 de abril de 2024.
Delgado-Lemus A, Torres I, Blancas J, Casas A (2014) Vulnerability and risk management of Agave species in the Tehuacán Valley, México. Journal of Ethnobioloty and Ethnomedicine 10: 53.
Gamboa-Villa LC, Martínez-Fernández E, Martínez-Jaimes P, Suárez-Rodríguez R, Ramírez-Trujillo JA (2020) Biocontrol de Trichoderma spp. hacia patógenos de la raíz de caña de azúcar. Agrociencia 54(7): 955-966. https://doi.org/10.47163/agrociencia.v54i7.2245
Gams W, Bissett J (2002) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma y Gliocladium: basic bilogy, taxonomy and genetics. Taylor y Francis, Ltd. pp. 3-34. https://doi.org/10.1201/9781482295320
García-Mendoza AJ (2010) Revisión taxonómica del complejo de Agave potatorum Zucc. (Agavaceae): nuevos taxa y neotipificación. Acta Botánica Mexicana 91: 71-93.
Huanca-Mamani W, Salvatierra MR, Sepúlveda-Chavera G (2014) A fast and efficient method for total DNA extraction from soil filamentous fungi. Idesia (Arica) 32(2): 75-78. https://dx.doi.org/10.4067/S0718-34292014000200010
Kalsoom R, Ahmed S, Nadeem M, Chochan S, Abid M (2019) Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. International Journal of Environmental Science and Technology 16: 921-928. https://doi.org/10.1007/s13762-018-1717-8
Khan RAA, Najeeb S, Hussain S, Xie B, Li Y (2020) Bioactive secondary metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 8(6): 817. http://doi.org/10.3390/microorganisms8030401
López-López ME, Del-Toro-Sánchez CL, Ochoa-Ascencio S, Aguilar-López JA, Martínez-Cruz O, Madrigal-Pulido JA, Robles-García MA, Bernal-Mercado AT, Ávila-Novoa MG, Guerrero-Medina PJ, Gutiérrez-Lomelí M (2023) Antagonismo de cepas de Trichoderma aisladas de Tanaxuri, Michoacán, México contra patógenos postcosecha del fruto de aguacate (Persea americana Mill). Revista de Ciencias Biológicas y de la Salud 25: 24-33. http://doi.org/10.18633/biotecnia.v25i1.1726
Lucio LCF (2022) Los destilados de agave en México: una exploración desde la economía ecológica radial. Revista Iberoamericana de Economía Ecológica 35(3): 21-38.
Martínez B, Infante D, Reyes Y (2013) Trichoderma spp. y su función en el control de plagas en los cultivos. Revista Protección Vegetal 28(1): 1-11.
Mohiddin FA, Padder SA, Bhat AH, Ahanger MA, Shikari AB, Wani SH, Bhat FA, Nabi SU, Hamid A, Bhat NA, Sofi NR, Waza SA, Hamid B, Parveen S, Hussain A, Bhat AN, Ali OM, Dar MS, Latef AAHA (2021) Phylogeny and optimization of Trichoderma harzianum for chitinase production: evaluation of their antifungal behaviour against the prominent soil borne phyto-pathogens of temperate India. Microorganisms 9: 1962. https://doi.org/10.3390/microorganisms9091962
Moreira FMS, Huising EJ, Bignell DE (2012) Manual de biología de suelos tropicales: muestreo y caracterización de la biodiversidad bajo suelo. Instituto Nacional de Ecología. México. pp. 149-162.
Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. Journal of biological. Chemistry 153: 375-380. https://doi.org/10.1016/S0021-9258(18)71980-7
Ng TK, Weimer PJ and Zeikus JG (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Archives of Microbiology 114: 1977. http://doi.org/10.1007/BF00429622
Rifai MA (1969) A revision of the genus Trichoderma. Mycological Papers 116: 1-56.
Rochelle PA, Will JAK, Fry JC, Jenkins GJS, Parkes RJ, Turley CM, Weightman AJ (1995) Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. In: Trevors JT, Van Elsas JD (eds) Nucleic acids in the environment. Springer. Alemania. https://doi.org/10.1007/978-3-642-79050-8_11
Sabando-Ávila F, Molina-Atiencia LM, Garcés-Fiallos FR (2017) Trichoderma harzianum en pre-transplante aumenta el potencial agronómico del cultivo de piña. Revista Brasileira de Ciencias Agrarias 12(4): 410-414. https://doi.org/10.5039/agraria.v12i4a5468
Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycological Research 100: 923-935. https://doi.org/10.1016/S0953-7562(96)80043-8
Sánchez HL, Arias MRM, Rosique GJE, Pacheco FCJ (2018) Diversidad del género Trichoderma (Hypocraceae) en un área natural protegida de Tabasco, México. Acta Botánica Mexicana 123: 167-182. http://dx.doi. org/10.21829/abm123.2018.1269
Savín-Molina J, Hernández-Montiel LG, Ceiro-Catasú W, Ávila-Quezada GD, Palacios-Espinosa A, Ruíz-Espinoza FH y Romero-Bastidas M (2021) Caracterización morfológica y potencial de biocontrol de especies de Trichoderma aisladas de suelos del semiárido. Revista Mexicana de Fitopatología 39(3): 435-451. https://doi.org/10.18781/R.MEX.FIT.2106-7
Somogyi M (1952) Notes on sugar determinations. Journal of biological Chemistry 195: 19-23. https://doi.org/10.1016/S0021-9258(19)50870-5
Vera GAM, Santiago GPA, López MG (2009) Compuestos volátiles aromáticos generados durante la elaboración de mezcal de Agave angustifolia y Agave potatorum. Revista Fitotecnia Mexicana 32(4): 273-279. http://doi.org/10.35196/rfm.2009.4.273-279
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).