Warm and dry conditions as triggers of Dendroctonus mexicanus Hopkins Outbreaks

Authors

  • Gerardo Cuellar Rodriguez Facultad de Ciencias Forestales, UANL
    • Julio Nemorio Matínez Sánchez Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales
      • Tereza Cavazos Pérez Center for Scientific Research and Higher Education at Ensenada image/svg+xml
        • Ángel Mario Reyna González Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales
          • Reynaldo de León Valladares Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales

            DOI:

            https://doi.org/10.19136/era.a12nV.4306

            Keywords:

            bark beetles, Pinus cembroides, climate change, climate oscillations, temperate forest

            Abstract

            The association of Dendroctonus mexicanus with the warm and cold phases of the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO) was evaluated, along with its relationship with infested area and the variables: mean, maximum, and minimum temperature, and precipitation in Pinus cembroides forests of Aramberri, Nuevo León, during 2015-2020. The affected area was estimated using official reports and Sentinel-2 delineation through unsupervised classification and photointerpretation. Monthly temperature and precipitation series, together with SOI, PDO, and AMO, were analyzed using Pearson correlations with lags of 0-11 months (α = 0.05) and phase-based composites. Total affected area was 2,058.4 ha; 2017 accounted for 1 054.71 ha (51.2%), under the influence of the 2016-2017 La Niña episode and negative PDO. Months with infestation exhibited Tmax values of 25.8-29.2 °C (median ≈ 27.1 °C) and Tmin of 14.7-17.9 °C (median ≈ 17.3 °C). Tmax correlated positively with SOI and negatively with PDO, while Tmin showed weaker negative correlations with PDO. Precipitation exhibited isolated significant associations, and AMO showed no relevant signal. Most infestation occurred in spring summer and was distributed in discrete outbreaks concentrated near the arid boundary of the Mexican Altiplano.

            Downloads

            Download data is not yet available.

            Author Biographies

            • Julio Nemorio Matínez Sánchez, Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales

              Doctor en Ciencias con Orientación en Manejo de Recursos Naturales

            • Ángel Mario Reyna González, Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales

              Maestro en restauración ecológica

            • Reynaldo de León Valladares, Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales

              Maestro en ciencias forestales

            References

            Armendáriz-Toledano F, Zúñiga G (2017) Illustrated key to species of genus Dendroctonus (Curculionidae: Scolytinae) occurring in Mexico and Central America. Journal of Insect Science 17: 1-15. https://doi.org/10.1093/jisesa/iex009

            Bai M, Wang X, Yao Q, Fang K (2022) ENSO modulates interaction between forest insect and fire disturbances in China. Natural Hazards Research 2: 138-146. https://doi.org/10.1016/j.nhres.2022.04.001

            Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience 60: 602-613. https://doi.org/10.1525/bio.2010.60.8.6

            Bernal AA, Kane JM, Knapp EE, Zald HSJ (2023) Tree resistance to drought and bark beetle-associated mortality following thinning and prescribed fire treatments. Forest Ecology and Management 530: 120758. https://doi.org/10.1016/j.foreco.2022.120758

            Bravo-Cabrera JL, Azpra-Romero E, Zalarruqui-Such V, Gay-García C (2017) Effects of El Niño in Mexico during rainy and dry seasons: An extended treatment. Atmósfera 30: 221-232. https://doi.org/10.20937/ATM.2017.30.03.02

            Cavazos T (1999) Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Climate 12: 1506-1523.

            Cervantes-Martínez R, Cerano-Paredes J, Sánchez-Martínez G, Villanueva-Díaz J, Esquivel-Arriaga G, Cambrón-Sandoval VH, Méndez-González J, Castruita-Esparza LU (2019) Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25: 269-290. https://doi.org/10.5154/r.rchscfa.2019.01.006

            Cuéllar-Rodríguez G, Equihua-Martínez A, Villa-Castillo J, Estrada-Venegas EG, Méndez-Montiel T, Romero-Nápoles J (2013) Análisis espacio-temporal de bosques de Pinus cembroides atacados por Dendroctonus mexicanus. Revista Mexicana de Ciencias Forestales 4: 42-49. https://doi.org/10.29298/rmcf.v4i17.430

            Cuéllar-Rodríguez G, Equihua-Martínez A, Estrada-Venegas E, Méndez-Montiel T, Villa-Castro J, Romero-Nápoles J (2012) Fluctuación poblacional de Dendroctonus mexicanus y su correlación con variables climáticas. Boletín del Museo de Entomología de la Universidad del Valle 13: 12-19. https://doi.org/10.17151/bmeuv.2012.13.2.2

            Fuentes-Franco R, Giorgi F, Coppola E, Kucharski F (2015) The role of ENSO and PDO in variability of winter precipitation over North America. Climate Dynamics 46: 3259-3277. https://doi.org/10.1007/s00382-015-2767-y

            Gómez-Pineda E, Hammond WM, Trejo-Ramírez O, Gil-Fernández M, Allen CD, Blanco-García A, Sáenz-Romero C (2022) Drought years promote bark beetle outbreaks in Mexican forests. Forest Ecology and Management 505: 119944. https://doi.org/10.1016/j.foreco.2021.119944

            Hanley DE, Bourassa MA, O’Brien JJ, Smith SR, Spade ER (2003) A quantitative evaluation of ENSO indices. Journal of Climate 16: 1249-1258. https://doi.org/10.1175/1520-0442(2003)161249

            Hart SJ, Veblen TT, Eisenhart KS, Jarvis J, Kulakowski D (2014) Drought induces spruce beetle outbreaks across Colorado. Ecology 95: 930-939. https://doi.org/10.1890/13-1810.1

            IPCC (2021). Cambio climático 2021: Bases físicas. Resumen para responsables de políticas. Contribución del Grupo de Trabajo I al Sexto Informe de Evaluación del IPCC. Cambridge University Press.

            López-Gómez V (2017) Los escarabajos descortezadores: responsables de la pérdida de masa forestal en México. Revista Mexicana de Ciencias Forestales 8: 7-21. https://doi.org/10.29298/rmcf.v8i39.97

            Magaña VO, Vázquez JL, Pérez JL, Pérez JB (2003) Impact of El Niño on precipitation in Mexico. Geofísica Internacional 42: 313-330. https://doi.org/10.22201/igeof.00167169p.2003.42.3.394

            Mantua NJ, Hare SR, Zhang Y, Wallace J, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78: 1069-1079.

            Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. Journal of Oceanography 58: 35-44. https://doi.org/10.1023/A:1015820616384

            Martínez-Rincón S, Valdez-Lazalde JR, De los Santos-Posadas HM, Sánchez-Martínez G (2022) Risk of infestations by Dendroctonus mexicanus and D. frontalis in forests of Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente 28: 37-55. https://doi.org/10.5154/r.rchscfa.2020.11.069

            Martínez-Sifuentes AR, Villanueva-Díaz J, Estrada-Ávalos J (2020) Runoff reconstruction with tree rings in Sonora, Mexico. iForest 13: 98-106. https://doi.org/10.3832/ifor3190-013

            McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the U.S. PNAS 101: 4136-4141. https://doi.org/10.1073/pnas.0306738101

            Méndez-Encina FM, Méndez-González J, Cerano-Paredes J (2020) Actual and potential distribution of Dendroctonus mexicanus under climate change scenarios. Madera y Bosques 26: e2622002. https://doi.org/10.21829/myb.2020.2622002

            Méndez-González J, Ramírez-Leyva A, Cornejo-Oviedo E, Zárate-Lupercio A, Cavazos T (2010) Teleconexiones de la PDO a la precipitación y temperatura en México. Investigaciones Geográficas 73: 57-70.

            Mijares-Fajardo R, Lobato-Sánchez R, Patiño-Gómez C, Guevara-Polo DE (2024) Atlantic and Pacific SST correlations with precipitation over northern Mexico. Atmósfera 38: 214-234. https://doi.org/10.20937/ATM.53257

            Morales-Rangel A, Cambrón-Sandoval VH, Soto-Correa JC, Wallace-Jones R, Obregón-Zúñiga JA (2018) Temperature effect on Dendroctonus species under climate change. Acta Zoológica Mexicana 34: 1-18. https://doi.org/10.21829/azm.2018.3412141

            Nardi L, Camarero JJ, Battipaglia G, de Luis M (2022) Increasing wildfire occurrence and insect outbreaks linked to climate warming in pine forests. Forest Ecology and Management 505: 119930. https://doi.org/10.1016/j.foreco.2021.119930

            Pavia EG, Graef F, Reyes J (2006) PDO-ENSO effects on the climate of Mexico. Journal of Climate 19: 6433-6438. https://doi.org/10.1175/JCLI4045.1

            Pérez-Miranda R, González-Hernández A, Velasco-Bautista E, Romero-Sánchez ME, Arriola-Padilla VJ, Acosta-Mireles M, Carrillo-Anzures F (2021) Temporal analysis of the distribution of D. mexicanus in Mexico. Revista Mexicana de Ciencias Forestales 12: 27-55. https://doi.org/10.29298/rmcf.v12i67.1079

            Ponce-Calderón LP, Villanueva-Díaz J, Rodríguez-Trejo DA, Bilbao BA, Álvarez-Gordillo GDC (2023) Climate response of Pinus oocarpa radial growth. iForest 16: 174-181. https://doi.org/10.3832/ifor4112-016

            Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Current Forestry Reports 4: 35-50. https://doi.org/10.1007/s40725-018-0075-6

            Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of bark beetle eruptions. BioScience 58: 501-518. https://doi.org/10.1641/B580607

            Rubio-Ugalde DJ, Cambrón-Sandoval VH, Vergara-Pineda S (2017) Coleópteros depredadores asociados al monitoreo de descortezadores. Entomología Mexicana 4: 186-191.

            Rzedowski J (1978) Vegetación de México. Limusa. México. 505p.

            Salinas-Moreno Y, Mendoza G, Barrios MA, Cisneros R, Macías-Sámano J, Zúñiga G (2004) Areography of the genus Dendroctonus in Mexico. Journal of Biogeography 31: 1163-1177.

            Sáenz-Romero C, Cambrón-Sandoval VH, Hammond W, Méndez-González J, Luna-Soria H, Macías-Sámano JE, Gómez-Romero M, Trejo-Ramírez O, Allen CD, Gómez-Pineda E, Del-Val E (2023) Abundance of D. frontalis and D. mexicanus along altitudinal transects in Mexico. PLOS One 18: e0288067. https://doi.org/10.1371/journal.pone.0288067

            Sánchez-Salas JA, Torres-Espinosa LM (2007) Biología y hábitos del descortezador Dendroctonus mexicanus Hopkins y estrategias de control en Pinus teocote en Nuevo León. CIRNE, INIFAP. Folleto Técnico No. 29. Saltillo, Coahuila, México. 35p.

            Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2014) North American drought: Reconciling observed changes in hydroclimate with projections. Journal of Climate 27: 4581-4603. https://doi.org/10.1175/JCLI-D-13-00480.1

            Schlesinger M, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367: 723-726. https://doi.org/10.1038/367723a0

            Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence. Ecological Applications 15: 2000-2014. https://doi.org/10.1890/04-1579

            Sherriff RL, Berg EE, Miller AE (2011) Climate variability and spruce beetle outbreaks in Alaska. Ecology 92: 1459-1470. https://doi.org/10.1890/10-1118.1

            Sosa-Díaz L, Méndez-González J, García-Aranda MA, Cambrón-Sandoval VH, Villarreal-Quintanilla JA, Ruiz-González CG, Montoya-Jiménez JL (2018) Distribución potencial de plagas en bosques de coníferas de México. Revista Mexicana de Ciencias Forestales 9: 187-208. https://doi.org/10.29298/rmcf.v9i47.159

            Soto-Correa JC, Girón-Gutiérrez D, Cambrón-Sandoval VH (2020) Coloración y abundancia de Dendroctonus mexicanus en cuatro regiones de México. Revista Mexicana de Ciencias Forestales 11: 163–184. https://doi.org/10.29298/rmcf.v11i59.668

            Soto-Correa JC, Hernández-Muñoz G, Cambrón-Sandoval VH (2022) Effect of climatic variables on Dendroctonus mexicanus from Hidalgo forests. Revista Mexicana de Ciencias Forestales 13: 31–55. https://doi.org/10.29298/rmcf.v13i69.1198

            Tran JK, Ylioja T, Billings RF, Régnière J, Ayres MP (2007) Impact of minimum winter temperatures on Dendroctonus frontalis dynamics. Ecological Applications 17: 882-899. https://doi.org/10.1890/06-0512

            Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters 24: 3057-3060. https://doi.org/10.1029/97GL03092

            Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. Journal of Climate 14: 1697-1701.

            Vázquez-Ochoa MF, Sánchez-Velásquez LR, Hernández-Vargas G, Ibarra-Zavaleta SP, Ruiz-Montiel C, Pineda-López MR (2022) Presencia de Dendroctonus en pinos del Parque Nacional Cofre de Perote. Revista Mexicana de Biodiversidad 93: e934048. https://doi.org/10.22201/ib.20078706e.2022.93.4048

            Zhang W, Jiang F, Stuecker MF, Jin FF, Timmermann A (2021) Spurious North Tropical Atlantic precursors to El Niño. Nature Communications 12: 3096. https://doi.org/10.1038/s41467-021-23411-6

            Downloads

            Published

            2025-12-15

            Issue

            Section

            SCIENTIFIC ARTICLE

            How to Cite

            Cuellar Rodriguez, G., Matínez Sánchez, J. N., Cavazos Pérez, T., Reyna González, Ángel M., & de León Valladares, R. (2025). Warm and dry conditions as triggers of Dendroctonus mexicanus Hopkins Outbreaks . Ecosistemas Y Recursos Agropecuarios, 12(V). https://doi.org/10.19136/era.a12nV.4306

            Most read articles by the same author(s)