Productive potential of soybean crop under rainfed at high altitudes

Authors

DOI:

https://doi.org/10.19136/era.a13n1.4378

Keywords:

Glycine max L., crude protein, oil, yield, temperate zones

Abstract

Soybean (Glycine max (L.) Merrill) is the main source of protein in animal feed concentrates and various products for human consumption. However, its production has been focused in tropical climate zones and little research has been done in different environments. Therefore, the objective of this study was to evaluate the productive potential and grain quality of soybean crop in high altitude environments. To do this, under a randomized complete block design in five locations that covered an altitudinal gradient of 1900 to 2700 masl, the agronomic performance of eight varieties was evaluated under rainfed conditions. Days to flowering, biomass production and chemical quality of the grain were quantified. The average yield in the environment at 2040 m was 1.1 t ha-1, the oil and protein content was 18 and 31%, respectively. At an altitude of 2526 m, all varieties completed their cycle, with an average yield of 0.1 t ha-1, 15% oil and 31% crude protein. At an altitude of 2079 m, only the earliest variety completed its cycle; the other varieties delayed their flowering, causing this stage and the grain formation period to be affected by frosts. Biomass production also decreased with altitude. It is concluded that soybeans have productive potential up to altitudes of 2000 m, because at higher altitudes the yield decreases, although the protein content remains constant.

Downloads

Download data is not yet available.

Author Biographies

  • Juan de Dios Guerrero-Rodríguez, Colegio de Postgraduados

    Campus Puebla, Profesor Investigador Titular.

  • Argelia Ortega Zárate, Colegio de Postgraduados

    Ingeniera Agrónomo en Agroecología

    Maestra en Ciencias en Desarrollo Agrícola Regional

  • Abel Gil Muñoz, Colegio de Postgraduados

    Profesor Investigador Titular, Colegio de Postgraduados

  • Higinio López Sánchez, Colegio de Postgraduados

    Profesor Investigador Titular, Colegio de Postgraduados

  • Fredy Mera Zúñiga, National Technological Institute of Mexico

    Profesor Investigador Instituto Tecnológico Nacional de México.

References

Alsajri FA, Wijewardana C, Irby J, Bellaloui N, Krutz L, Golden B, Gao W, Reddy K (2020) Developing functional relationships between temperature and soybean yield and seed quality. Agronomy Journal 12: 194–204. https://doi.org/10.1002/agj2.20034.

Anggoro G, Maulana H, Haksiwi P, Dyah R, Atma A, Anggara B, Karuniawan A (2023) Stability analysis to select the stable and high yielding black soybean (Glycine max (L) Merril) in Indonesia. International Journal of Agronomy 23. https://doi.org/10.1155/2023/7255444.

Anthony P, Malzer G, Sparrow S, Zhang M (2012) Soybean yield and quality in relation to soil properties. Agronomy Journal 104:1443–1458. https://doi.org/10.2134/agronj2012.0095.

AOAC (1975) Association of Official Analytical Chemists. Official Methods of Analysis. 12th edition. A.O.A.C. Washington, DC. USA.

Arslanoglu F, Aytac S (2010) Determination of stability and genotype x environment interactions of some agronomic properties in the different soybean (Glycine max. (L) Merrill) cultivars. Bulgarian Journal of Agricultural Science 16 (2): 181-195.

Banafunzi NMS, Mena A, Rangel I, Mastache AA, Molina ML, Gantes VMH, Marquez SR (1981) A new soybean for human consumption in the tropics. American Oil Chemists' Society 58: 143–147. https://doi.org/10.1007/bf02582322.

Basnet B, Mader E, Nickell C (1974) Influence of altitude on seed yield and other characters of soybeans differing in maturity in Sikkim (Himalayan Kingdom). Agronomy Journal 66 (4): 531-533. https://doi.org/10.2134/agronj1974.00021962006600040016x.

Bhartiya A, Aditya JP, Kumari V, Kishore N, Purwar JP, Agrawal A, Kant L, Pattanayak A (2018) Stability analysis of soybean [Glycine max (L.) Merrill] genotypes under multi-environments rainfed condition of North Western Himalayan hills. Indian Journal of Genetics 78(3): 342-347. https://doi.org/10.31742/IJGPB.78.3.6.

Borges A, Batista J, José L, Alves M (2006) Environmental and genotypic factors associated with genotype by environment interactions in soybean. Crop Breeding and Applied Biotechnology 6: 79-86. https://doi:10.12702/1984-7033.v06n01a11.

Câmara GMS, Sediyama T, Dourado-Neto D, Bernardes MS (1997) Influence of photoperiod and air temperature on the growth, flowering and maturation of soybean (Glycine max (L.) Merrill). Scientia Agricola 54: 149-154.

Capelin M, Madella L, Panho M, Meira D, Fernandes R, Colonelli L, Menegazzi C, Rosa A, Contreiras A, Benin G (2022) Impact of altitudes in gran yield, oil, and protein content of soybean. Australian Journal of Crop Sciences 16(02): 273-279. https://doi.org/10.21475/ajcs.22.16.02.3439.

Chirchir G, Mwangi M, Nyamongo DO, Gweyi-Onyango J (2017) Effects of genotype and agro-ecological conditions on storability of soybean [Glycine max (L.) Merr.] seed. Tropical Plant Research 4(1): 126–133 https://doi.org/10.22271/tpr.2017.v4.i1.019.

CONAGUA (2023) Resúmenes Mensuales de Lluvia y Temperatura. Comisión Nacional del Agua. https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias. Fecha de consulta: 11 de junio de 2024.

Dinsa T, Balcha U (2022) Adaptation study of improved soya bean (Glycine max (L.) varieties in East Shewa Zone, Oramia, Ethiopia. Science Research 10(5): 108-113. https://doi:10.11648/j.sr.20221005.11.

FAO (2022) Food and agriculture data. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/faostat/en/#home. Fecha de consulta: Consultado 11 de julio de 2022.

Hernández-Tecol K, Guerrero-Rodríguez J, Aceves-Ruíz E, Olvera-Hernández J, Martínez-Trejo G, Díaz-Ruíz R (2022) Potencial de producción de grano del cultivo de soya en el Valle de Puebla. Revista Mexicana de Ciencias Agrícolas 13 (5): 853-862. https://doi.org/10.29312/remexca.v13i5.3229.

Ibáñez MA, De Blas C, Cámara L, Mateos GG (2020) Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Animal Feed Science and Technology 267. https://doi.org/10.1016/j.anifeedsci.2020.114531.

IPNI (2023) Requerimientos Nutricionales del Cultivo de Soja. International Plant Nutrition Institute. http://nla.ipni.net/ipniweb/region/nla.nsf/e0f085ed5f091b1b852579000057902e/49c7194c60bccd4a05257e0e0068a297/$FILE/AA%20-%205%20Mayo-2014.pdf. Fecha de consulta: 11 de julio de 2022.

Kambhampati S, Aznar-Moreno J, Hostetler C, Caso T, Bailey S, Hubbard A, Durrett T, Allen D (2019) On the inverse correlation of protein and oil: examining the effects of altered central carbon metabolism on seed composition using soybean Fast Neutron Mutants. Metabolites. Metabolites 10 (1): 1-15. https://doi.org/10.3390/metabo10010018.

Liu A, Cheng S, Yung W, Li M, Lam H (2022) Genetic regulations of the oil and protein contents in soybean seeds and strategies for improvement. In Hon-Ming L, Man-Wah L (eds.) Advances in Botanical Research, Academic Press. USA. p. 259-293. https://doi.org/10.1016/bs.abr.2022.03.002.

Maldonado N, Ascencio G, Gill H (2010) Huasteca 400, nueva variedad de soya para el sur de Tamaulipas, oriente de San Luis Potosí y norte de Veracruz. Revista Mexicana de Ciencias Agrícolas 1(5): 687-692.

Maldonado N, Ascencio G (2012) Tamesí, nueva variedad de soya para el trópico húmedo de México. Revista Mexicana de Ciencias Agrícolas 3 (8): 1671-1677. https://doi.org/10.29312/remexca.v3i8.1332.

Maldonado N, Alcalá J, Ascencio G, García J (2021) Rendimiento y estabilidad de genotipos de soya para el trópico de México. Revista Mexicana de Ciencias Agrícolas 12(8): 1351-1362. https://doi.org/10.29312/remexca.v12i8.2267.

Meckel L, Egli D, Phillips R, Radcliffe D, Leggett J (1984) Effect of moisture stress on seed growth in soybeans. Agronomy Journal 76(4): 647-650. https://doi.org/10.2134/agronj1984.00021962007600040033x.

Mishra N, Tripathi M, Tiwari S, Tripathi N, Gupta N, Sharma, A (2021) Morphological and physiological performance of Indian soybean [Glycine max (L.) Merrill] genotypes in respect to drought. Legume Research:1-9. https://doi.org/10.18805/LR-4550.

Nascimento M, Finoto E, Sediyama T, Cruz C (2010) Adaptability and stability of soybean in terms of oil and protein content. Crop Breeding and Applied Biotechnology 15(2): 48-54. https://doaj.org/article/9745a508a22049359633c7c965c9d6b1.

Ohnishi S, Miyoshi T, Shirai S (2010) Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environmental and Experimental Botany 69: 56-62.

Pedersen P (2004) Soybean growth and development. Iowa State University. Extension Distribution Center. USA. 27p.

Piper E, Boote K (1999) Temperature and cultivar effects on soybean seed oil and protein concentrations. Journal of the American Oil Chemists’ Society 76: 1233–1241. https://doi.org/10.1007/s11746-999-0099-y.

Popović V, Miladinović J, Vidić M, Vučković S, Dražić G, Ikanović J, Đekić V, Filipović V (2015) Determining genetic potential and quality components of ns soybean cultivars under different agroecological conditions. Romanian Agricultural Research 32: 35-42 https://aspace.agrif.bg.ac.rs/handle/123456789/3746?locale-attribute=en.

Poudel S, Adhikari B, Dhillon J, Reddy K, Stetina S, Bheemanahalli R (2023) Quantifying the physiological, yield, and quality plasticity of Southern USA soybeans under heat stress. Plant Stress: 1-11. https://doi.org/10.1016/j.stress.2023.100195.

Rajasekaran C, Kalaivani T, Jayakumararaj R, Singh A, Pusalkar V, Marimuthu R (2009) Studies on the impact of altitudinal gradient on ammonium assimilatory metabolism in Glycine max L. (Fabaceae). Ethnobotanical Leaflets 13: 301-309.

Rogovska N, Blackmer A, Mallarino A (2007) Relationships between soybean yield, soil pH, and soil carbonate concentration. Soil Science Society of America Journal 71(4): 1251-1256 https://doi.org/10.2136/sssaj2006.0235.

Ruíz J, Medina G, González I, Flores H, Ramírez G, Ortiz C, Byerly K, Martínez R (2013) Requerimientos agroecológicos de cultivos. 2° ed. Libro técnico número 3. INIFAP. México. 578p.

SAS (2024) SAS On Demand for Academics. SAS Institute Inc USA. https://welcome.oda.sas.com/. Fecha de consulta: 10 de junio de 2024.

Shin SO, Shin SH, Ha TJ, Lim SG, Choi KJ, Baek IY, Lee SC, Park KY (2009) Soybean ecological response and seed quality according to altitude and seeding dates. Korean Joural of Crop Science 54(2): 143-158.

Sobko O, Stahl A, Hahn V, Zikeli S, Claupein W, Gruber S (2020) Environmental efects on soybean (Glycine Max (L.) Merr) production in Central and South Germany. Agronomy 10 (1847). https://doi.org/10.3390/agronomy10121847.

Song W, Yang R, Wu T, Wu C, Sun S, Zhang S, Jiang B, Tian S, Liu X, Han T (2016). Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. Journal of Agricultural and Food Chemistry 64: 4121−4130. https://doi.org/10.1021/acs.jafc.6b00008.

Staniak M, Czopek K, Stepien-Warda A, Kocira, A, Przyby´s M (2021) Cold stress during flowering alters plant structure, yield and seed quality of different soybean genotypes. Agronomy 11(2059). https://doi.org/10.3390/agronomy11102059.

Sucunza F, Gutiérrez F, García F, Boxler M, Rubio G (2018) Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. European Journal of Agronomy 96:87-95. https://doi.org/10.1016/j.eja.2018.03.004.

Tang Y, Lu S, Fang C, Liu H, Dong L, Li H, Su T, Li S, Wang L, Cheng Q, Liu B, Lin X, Kong F (2023). Diverse flowering responses subjecting to ambient high temperature in soybean under short-day conditions. Plant Biotechnology Journal 21: 782–791. https://doi:10.1111/pbi.13996.

Thagana W, Gethi M, Riungu, Kamundia J, Mbehero P (2013) Seed abortion and numerical components of seed yield of soyabean (Glycine max L. Merr.) in three contrasting agroecologies. Journal of Agricultural Sciences 4(1): 1-5. https://doi.org/10.1080/09766898.2013.11884694.

Torres N, Tovar-Palacio A (2009) La historia del uso de la soya en México, su valor nutricional y su efecto en la salud. Salud Pública de México 51(3): 346-254.

Wang J, Zhou P, Shi X, Yang N, Yan L, Zhao Q, Yang C, Guan Y (2019) Primary metabolite contents are correlated with seed protein and oil traits in near-isogenic lines of soybean. The Crop Journal 7 (5): 651-659. https://doi.org/10.1016/j.cj.2019.04.002.

Wilcox J, Shibles R (2001) Interrelationships among seed quality attributes in soybean. Crop Breeding, Genetics & Cytology 41(1): 11-14. https://doi.org/10.2135/cropsci2001.41111x.

Zhong X, Wang J, Shi X, Bai M, Yuan C, Cai C, Wang N, Zhu X, Kuang H, Wang X, Su J, He X, Liu X, Yang W, Yang C, Kong F, Wang E, Guan Y (2024). Genetically optimizing soybean nodulation improves yield and protein content. Nature Plants 10: 736–742 https://doi.org/10.1038/s41477-024-01696-x.

Published

2026-01-29

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Guerrero-Rodríguez, J. de D., Ortega Zárate, A., Gil Muñoz, A., López Sánchez, H., & Mera Zúñiga, F. (2026). Productive potential of soybean crop under rainfed at high altitudes. Ecosistemas Y Recursos Agropecuarios, 13(1). https://doi.org/10.19136/era.a13n1.4378

Most read articles by the same author(s)