Pre-emergent bioherbicidal potential of microwave/ultrasound-extracted creosote bush and tarbush on buffalo gourd
DOI:
https://doi.org/10.19136/era.a13n1.4427Keywords:
allelopathic compounds, natural extracts, mechanisms of action, oxidative stress, weed controlAbstract
Effective, safe weed control is crucial for sustainable food production. Bioherbicides derived from plant extracts present a promising alternative. Extracts from plants like creosote bush (Larrea tridentata) and tarbush (Flourensia cernua) contain allelopathic compounds that can disrupt weed germination and growth. The aim of this study was to evaluate the effect of L. tridentata and F. cernua extracts on pre-emergent control of buffalo gourd (Cucurbita foetidissima). Plant extracts were prepared using microwave and ultrasound technologies with "green" solvents and were applied at different doses [3 (low), 6 (medium), and 12 (high) L of extracts in 200 L per hectare] on C. foetidissima seeds, and their effect on germination, seedling growth, dry biomass, and mechanisms of action [on photosynthetic pigments (chlorophylls a, b, total, and carotenoids), total proteins, antioxidant enzymes (catalase and peroxidase), total phenolic compounds, antioxidant capacity, and oxidative stress (lipid peroxidation)] were evaluated. The phytochemicals like quercetin and (+)-gallocatechin in the bioherbicide extract were found. The high dose of the extract decreased germination rates and decreased seedling growth in C. foetidissima compared to the control. Although dry biomass showed no significant change, a trend toward reduction was observed in treated seedlings. Chlorophyll and carotenoid levels decreased in all treatments, while protein levels were unaffected. Low-dose treatments decreased catalase activity, and the high dose increased lipid peroxidation. This study demonstrates that allelopathic plant extracts effectively inhibit C. foetidissima seedling growth, with compound concentration and content critical to bioherbicide effectiveness
Downloads
References
Anupama, Deepika, Singh AK, Khare P (2023) An insight into herbicidal properties of Ocimum leaf and oil-loaded biochar formulations. Industrial Crops and Products 205: 117440. https://doi.org/10.1016/j.indcrop.2023.117440
Aranda-Ledesma NE, González-Hernández MD, Rojas R, Paz-González AD, Rivera G, Luna-Sosa B, Martínez-Ávila GCG (2022) Essential oil and polyphenolic compounds of Flourensia cernua leaves: chemical profiling and functional properties. Agronomy 12(10): 1-9. https://doi.org/103390/agronomy12102274
Arora S, Husain T, Prasad SM (2024) Allelochemicals as biocontrol agents: Promising aspects, challenges and opportunities. South African Journal of Botany 166: 503-511. https://doi.org/101016/jsajb202401029
Ascacio‐Valdés JA, Aguilera‐Carbó AF, Buenrostro JJ, Prado‐Barragán A, Rodríguez‐Herrera R, Aguilar CN (2016) The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid‐state fermentation. Journal of Basic Microbiology 56(4): 329-336. https://doi.org/10.1002/jobm.201500557
Bordin ER, Frumi Camargo A, Stefanski FS, Scapini T, Bonatto C, Zanivan J, Treichel H (2021) Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatalysis and Biotransformation 39(5): 346-359. https://doi.org/101080/1024242220201833864
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Castillo-Reyes F, León-Juárez ED, Nery-Flores SD, Flores-Gallegos AC, Campos-Muzquiz LG, Ascacio-Valdés JA, Rodríguez-Herrera R (2022) Polyphenols extraction from creosote bush, tarbush, and soursop using ultrasound-microwave and their effect against Alternaria alternata and Fusarium solani. Revista Mexicana de Fitopatología 40(3): 349-376. https://doi.org/10.18781/r.mex.fit.2206-7
Choudhary CS, Behera B, Raza MB, Mrunalini K, Bhoi TK, Lal MK, Das TK (2023) Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere 25: 100667. https://doi.org/101016/jrhisph2023100667
Da Silva-Carvalho RDS, Silva MAD, Borges MTMR, Forti VA (2023) Compounds identified in plant extracts applied to agriculture and seed treatment. Ciência Rural 54: e20220424. https://doi.org/101590/0103-8478cr20220424
De León-Zapata MPC, Lorenzo BPL, Rua-Rodríguez ML, Ventura J, Rodríguez-Herrera R, Aguilar CN (2021) Effect of Flourensia cernua bioactive compounds on stability of an oil-in-water (O/W) emulsion. Biointerface Research in Applied Chemistry 11(6): 13997-14006. https://doi.org/1033263/BRIAC1161399714006
DeLoach CJ, Boldt PE, Cordo HA, Johnson HB, Cuda JP (1986) Weeds common to Mexican and US rangelands: proposals for biological control and ecological studies In Management and utilization of arid land plants: Symposium proceedings. Gen Tech Rep RM-135 United States Department of Agriculture Forest Service. Saltillo, Mexico. pp. 49-68.
Duarte D, Galhano C, Dias MC, Castro P, Lorenzo P (2023) Invasive plants and agri-food waste extracts as sustainable alternatives for the preemergence urban weed control in Portugal Central Region. International Journal of Sustainable Development World Ecology 30(6): 605-619. https://doi.org/101080/1350450920232175737
Erida G, Saidi N, Hasanuddin S (2019) Allelopathic screening of several weed species as potential bioherbicides. IOP Conference Series: Earth and Environmental Science 334: 1-14. https://doi.org/101088/1755-1315/334/1/012034
Estell RE, Fredrickson EL, James DK (2016) Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua. Biochemical Systematics and Ecology 65: 108-114. https://doi.org/101016/jbse201602019
Estrada-Castillón E, Garza-López M, Villarreal-Quintanilla JÁ, Salinas-Rodríguez MM, Soto-Mata BE, González-Rodríguez H, Cantú-Ayala C (2014) Ethnobotany in Rayones, Nuevo León, México. Journal of Ethnobiology and Ethnomedicine 10: 1-13. https://doi.org/101186/1746-4269-10-62
FAO. (2009). Global agriculture towards 2050. How to Feed the World in 2050. Agricultural Development Economics Division, Economic and Social Development Department, Rome, Italy. http://www.fao.org/fi leadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture. pdf
Gao WT, Su WH (2024) Weed management methods for herbaceous field crops: a review. Agronomy 14(3): 1-23. https://doi.org/103390/agronomy14030486
Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum 27: 395-407. https://doi.org/10.1007/s11738-005-0017-3
Gulzar A, Siddiqui MB, Bi S. (2014). Assessment of allelopathic potential of Cassia sophera L on seedling growth and physiological basis of weed plants. African Journal of Biotechnology 13(9): 1037-1046. https://doi.org/105897/AJB201313512
Hasan M, Ahmad-Hamdani MS, Rosli AM, Hamdan H (2021) Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 10(6): 1212. https://doi.org/103390/plants10061212
Hyder PW, Fredrickson EL, Estell RE, Tellez M, Gibbens RP (2002) Distribution and concentration of total phenolics, condensed tannins, and nordihydroguaiaretic acid (NDGA) in creosotebush (Larrea tridentata). Biochemical Systematics and Ecology 30(10): 905-912. https://doi.org/101016/S0305-1978(02)00050-9
Kanatas P (2020) Potential role of Eucalyptus spp. and Acacia spp. allelochemicals in weed management. Chilean Journal of Agricultural Research 80(3): 452-458. https://doi.org/10.4067/S0718-58392020000300452
Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57(2): 315-319. https://doi.org/10.1104/pp.57.2.315
Khamare Y, Chen J, Marble SC (2022) Allelopathy and its application as a weed management tool: A review. Frontiers in Plant Science 13: 1034649. https://doi.org/103389/fpls20221034649
Khan R, Khan MA, Waqas M, Haroon M, Hussain Z, Khan N, Bashir S (2012) Bioherbicidal activity of some winter weeds against some crops. Pakistan Journal of Weed Science Research 18(4): 561-569. https://doi.org/10.5555/20133131788
Kostina-Bednarz M, Płonka J, Barchanska H (2023) Allelopathy as a source of bioherbicides: Challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology 22(2): 471-504. https://doi.org/101007/s11157-023-09656-1
Li J, Chen H, Guo C, Chen Q, Zhao T, Chen X, Du Y, Du H, Miao Y, Liu D (2023) Artemisia argyi essential oil exerts herbicidal activity by inhibiting photosynthesis and causing oxidative damage. Industrial Crops and Products 194: 116258. https://doi.org/10.1016/j.indcrop.2023.116258
Linares-Braham A, Palomo-Ligas L, Nery-Flores SD (2023) Bioactive compounds and pharmacological potential of hojasén (Flourensia cernua): A mini review. Plant Science Today 10(sp2): 304-312. https://doi.org/1014719/jst2546
Martinez C, Valenzuela JL, Jamilena M (2021) Genetic and pre- and postharvest factors influencing the content of antioxidants in cucurbit crops, Antioxidants 10(6): 894. https://doi.org/103390/antiox10060894
Mata R, Bye R, Linares E, Macías M, Rivero-Cruz I, Pérez O, Timmermann BN (2003) Phytotoxic compounds from Flourensia cernua. Phytochemistry 64(1): 285-291. https://doi.org/101016/S0031-9422(03)00217-6
Mehdizadeh M, Mushtaq W (2020) Biological control of weeds by allelopathic compounds from different plants: a bioherbicide approach. In: Natural Remedies for Pest, Disease and Weed Control. Academic Press. pp.107-117. https://doi.org/10.1016/B978-0-12-819304-4.00009-9
Mejía-Morales C, Rodríguez-Macías R, Salcedo-Pérez E, Zamora-Natera JF, Rodríguez-Zaragoza FA, Molina-Torres J, Délano-Frier JP, Zañudo-Hernández J (2021) Contrasting metabolic fingerprints and seed protein profiles of Cucurbita foetidissima and C. radicans fruits from feral plants sampled in central Mexico. Plants 10: 2451. https://doi.org/103390/plants10112451
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Madariaga-Navarrete A, Higuera-Piedrahita RI, Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Zaragoza-Bastida A (2022) Phytochemical compounds and pharmacological properties of Larrea tridentata. Molecules 27: 5393. https://doi.org/103390/molecules27175393
Motmainna M, Juraimi AS, Ahmad-Hamdani MS, Hasan M, Yeasmin S, Anwar MP, Islam AM (2023) Allelopathic potential of tropical plants—a review. Agronomy 13(8): 2063. https://doi.org/103390/agronomy13082063
Nadeem M, Safdar ME, Hayyat MS, Ibrahim M, Sandhu H, Shehzad M, Sarwar M (2023) Allelopathic effect of sugarcane intercrops on its emergence and growth. Journal of Agriculture and Food 4(2): 28-39. https://doi.org/1052587/JAF040203
Nusrat AA, Kumar N, Kumar J (2018) Bio-herbicides for sustainable and eco-friendly weed control: A review. International Journal of Advanced Research 6: 550-561. http://dx.doi.org/10.21474/IJAR01/8173
Parida PK, Deb A. (2023). Allelochemicals and allellopathic mechanism. In: Madhu B, Bhanukiran B (Editors). Integrated Publications TM, New Delhi. pp. 49-65. https://doi.org/10.22271/int.book.285
Pinto M, Sousa B, Martins M, Pereira C, Soares C, Fidalgo F (2023) Unveiling the efficacy of pre-emergent application of young Eucalyptus globulus leaves as a weed control strategy: Bridging macroscopic effects and cellular responses. Plant Physiology and Biochemistry 203: 108010. https://doi.org/10.1016/j.plaphy.2023.108010
Radhakrishnan R, Alqarawi AA, Abdallah EF (2018) Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety 158: 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018
Roberts J, Florentine S, Fernando WGD, Tennakoon KU (2022) Achievements, developments and future challenges in the field of bioherbicides for weed control: a global review. Plants 11: 2242. https://doi.org/103390/plants11172242
Rodríguez D, Casagrande G, Carmona-Galindo VD (2016) Preliminary Report: Effects of black mustard allelopathy on the fitness and life history strategies of buffalo gourd in southern California. Bios 87(3): 98-103. http://wwwbiooneorg/doi/full/101893/BIOS-D-14-000071
Rosemeyer ME, Brown JK, Nelson MR (1986) Five viruses isolated from field-grown buffalo gourd (Cucurbita foetidissima). Plant Disease 1: 405-409. https://doi.org/101094/PD-70-405
Salehi B, Quispe C, Sharifi-Rad J, Giri L, Suyal R, Jugran AK, Zam W (2021) Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: a key to alleviate oxidative stress‐mediated disorders. Phytotherapy Research 35(7): 3533-3557. https://doi.org/101002/ptr7045
Shadab MO, Parveen U, Ain Q, Akhtar N, Khan M, Siddiqui MB (2024) Allelopathic effects of stem aqueous extract of Lepidium didymum L. against Lens culinaris and Melilotus alba. Research Square 1-15. https://doi.org/1021203/rs3rs-3954673/v1
Sidhu HK, Malik IA, Varun M, D’souza RJ (2023) Allelopathic effect of leaf extracts of some common weeds on seed germination characteristics and growth of Oryza sativa L. Biological Forum – An International Journal 15: 475-481.
Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Siyar S, Majeed A, Muhammad Z, Ali H, Inayat N (2019) Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecologica Sinica 39(1): 63-68. https://doi.org/101016/jchnaes201805007
Soto-Maldonado C, Caballero-Valdés E, Santis-Bernal J, Jara-Quezada J, Fuentes-Viveros L, Zúñiga-Hansen ME (2022) Potential of solid wastes from the walnut industry: Extraction conditions to evaluate the antioxidant and bioherbicidal activities. Electronic Journal of Biotechnology 58: 25-36. https://doi.org/10.1016/j.ejbt.2022.04.005
Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Research Journal of Chemical Sciences 4(9): 63-69. https://doi.org/10.5555/20153044304
Villaseñor RJL, Espinoza FJ (1998) Invasive plants: changing the landscape of America. Federal Interagency Committee for the Management of Noxious and Exotic Weeds, University of Minnesota Washington, DC USA.109p.
Wazir I, Sadiq M, Baloch MS, Awan IU, Khan EA, Shah IH, Bakhsh I (2011) Application of bio-herbicide alternatives for chemical weed control in rice. Pakistan Journal of Weed Science Research 17(3): 245-252. https://doi.org/10.5555/20123164877
Published
Issue
Section
License
Copyright (c) 2026 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).