Hydraulic retention time in the aquaponic cultivation of Swiss chard and Koi carp

Authors

DOI:

https://doi.org/10.19136/era.a13n1.4529

Keywords:

Ornamental aquaculture, Plant growth performance, Nutrient dynamics, Sustainable food production, Recirculating aquaculture systems

Abstract

Aquaponics is a sustainable alternative that integrates fish farming with hydroponic plant production, creating a system where plants utilize fish waste (N, P, and K), which is transformed by bacteria into assimilable nutrients. Hydraulic Retention Time (HRT) is a critical parameter that determines the time water remains in hydroponic beds, influencing nutrient availability. The objective was to evaluate the effect of HRT on the aquaponic cultivation of Swiss chard (Beta vulgaris var. Cicla). Additionally, koi carp (Cyprinus carpio var. koi) is a highly attractive species increasingly popular in ornamental ponds, which also require adequate physical and biological filtration for proper animal maintenance. Six HRTs (40, 60, 80, 100, 120, and 140 minutes) were randomly assigned. A total of 144 Swiss chard seedlings were cultivated in hydroponic beds for 40 days, while 350 juvenile koi carp were housed in the tank. The absolute growth rate and edible biomass of Swiss chard were calculated, along with water quality parameters. The results showed that the 40-minute HRT treatment achieved the highest productivity, with significant differences observed between 40–60 minutes and 120–140 minutes. Additionally, the need to supplement oxygen in the plant growth beds was identified. These findings highlight the critical role of HRT in optimizing productivity within aquaponic systems.

Downloads

Download data is not yet available.

Author Biography

  • Alicia del Rosario Martínez-Yáñez, University of Guanajuato

    Profesor Investigador

    Departamento de Veterinaria y Zootecnia

References

Camargo-Castellanos J, Flores-García L, Herrera-Díaz I, Álvarez-González C, Albertos-Alpuche P, Martínez-Yáñez R (2021) System management of Lemna minor in aquaponics. Aquaculture Research 00: 1-15. https://doi.org/10.1111/are.15637

Barickman TC, Kopsell DA (2016) Nitrogen form and ratio impact Swiss chard (Beta vulgaris subsp. cicla) shoot tissue carotenoid and chlorophyll concentrations. Scientia Horticulturae 204: 99-105. https://doi.org/10.1016/J.SCIENTA.2016.04.007

Carbone, A. 2015. Modificación artificial del ambiente: Cultivos protegidos. En: Beltrano, J. Gimenez D (Eds.) Cultivo en hidroponía. Editorial Universidad Nacional de la Plata. Buenos Aires, Argentina. Pp: 140-166.

Casas Cardoso G, Veitía N (2008) Aplicación de métodos de comparaciones múltiples en Biotecnología Vegetal. Biotecnología Vegetal 8(2): 67-71. https://biblat.unam.mx/hevila/Biotecnologiavegetal/2008/vol8/no2/1.pdf

Dacey JW (1980) Internal winds in water lilies. An adaptation for life in anaerobic sediments. Science 210: 1017-1019. Washington, D.C.

Dediu L, Cristea V, Xiaoshuan Z (2011) Waste production and valorization in an integrated aquaponic system with bester and lettuce. African Journal of Biotechnology 11(9). https://doi.org/10.5897/AJB11.2829

Endut A, Jusoh A, Ali N, Wan N, Hassan A (2010) A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology 101: 1511-1517. https://doi.org/10.1016/j.biortech.2009.09.040

Ercan N, Bayyurt R (2014) The effects of applications which increase the O₂ of the water on yield and quality of lettuce grown in a floating system. Acta Horticulturae 1034: 77-84. https://doi.org/10.17660/ACTAHORTIC.2014.1034.8

Espinosa Moya E, Ángel Sahagún C, Mendoza Carrillo J, Albertos Alpuche P, Álvarez-González C, Martínez-Yáñez A (2016) Herbaceous plants as part of biological filter for aquaponics system. Aquaculture Research 47: 1716-1726. https://doi.org/10.1111/are.12626

Gómez F, Ortega N, Trejo L, Sánchez R, Salazar E, Salazar J (2018) La acuaponía: alternativa sustentable y potencial para la producción de alimentos en México. Agro Productividad 8(3): 60-65.

https://biblat.unam.mx/hevila/Agroproductividad/2015/vol8/no3/10.pdf

Heinitz MC, Lemme A, Schulz C (2016) Measurement of digestibility in agastric fish based on stripping method – apparent nutrient, energy and amino acid digestibilities of common feed ingredients for carp diets (Cyprinus carpio). Aquaculture Nutrition 22(5): 1065-1078. https://doi.org/10.1111/ANU.12324

Ikeura H, Tsukada K, Tamaki M (2017) Effect of microbubbles in deep flow hydroponic culture on Spinach growth. Journal of Plant Nutrition 40(16): 2358-2364. https://doi.org/10.1080/01904167.2017.1346663

Lenzi A, Baldi AD, Tesi R (2010) Growing spinach in a floating system with different volumes of aerated or non-aerated nutrient solution. Advances in Horticultural Science 25(1): 21-25. https://doi.org/10.13128/AHS-12780

MITECO (2020) Ficha Técnica Cyprinus carpio - Carpa común. Ministerio para la Transición Ecológica y el Reto Demográfico. https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/temas/conservacion-de-especies/mtjcyprinuscarpio_tcm30-523161.pdf Fecha de consulta: 03 diciembre de 2024.

Morales de León J, Bourges R, Camacho P (2015) Tablas de composición de alimentos y productos alimenticios. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Ciudad de México, México.

Pineda JP, Moreno RM, Colinas LM, Sahagún CJ (2020) El oxígeno en la zona radical y su efecto en las plantas. Revista Mexicana de Ciencias Agrícolas 11(4): 931-943. https://doi.org/10.29312/REMEXCA.V11I4.2128

Pinheiro I, Arantes R, Espíritu-Santo C, Nascimiento-Vieira F, Lapa K, Gonzaga L, Fett R, Barcelos-Oliveira J, Seiffer W (2017) Producción de halófita Sarcocornia ambigua y camarón blanco del Pacífico en sistema acuapónico con tecnología biofloc. Ingeniería Ecológica 100: 261-267. https://doi.org/10.1016/j.ecoleng.2016.12.024

Rodríguez-Chiunti M, Vidal-Gamboa A (2020) Simulación del requerimiento hídrico en el cultivo de acelga bajo malla sombra para un uso sustentable del agua en Cosamaloapan, Veracruz. Revista Internacional de Desarrollo Regional Sustentable 5(2): 569-580.

Shete A, Verma A, Chadha N, Prakash C, Peter R, Ahmad I, Nuwansi K (2016) Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis). Aquacultural Engineering 72: 53-57. https://doi.org/10.1016/j.aquaeng.2016.04.004

Sinha R K (2004) Modern Plant Physiology: 290-309. Alpha Science International, India.

Tanaka G, Yamashita Y, Nakabayashi K (2000) Effect of supersaturation of dissolved oxygen on the growth of tomato plants and nutrient uptake in hydroponic culture. Shokubutsu Kojo Gakkaishi 13(1): 21-28. https://doi.org/10.2525/JSHITA.13.21

Wallace-Springer N, Wells DE, Pickens JM, Ayipio E, Kemble J (2022) Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity. Agronomy 12(10): 2570. https://doi.org/10.3390/agronomy12102570

Yang T, Kim H (2020) Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae 256. https://doi.org/10.1016/j.scienta.2019.108619

Published

2026-01-29

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Martínez-Yáñez, A. del R., García Aguirre, R., Herrera Díaz, I. E., Díaz plascencia, D., & Albertos Alpuche, P. J. (2026). Hydraulic retention time in the aquaponic cultivation of Swiss chard and Koi carp. Ecosistemas Y Recursos Agropecuarios, 13(1). https://doi.org/10.19136/era.a13n1.4529

Most read articles by the same author(s)