Effect of inoculation with bacteria of the genus Pseudomonas on growth of Fraxinus uhdei plants

Authors

  • Ana Laura Cruzado-Vargas National Autonomous University of Mexico image/svg+xml
    • Liliana Sánchez-Montaño Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM , National Autonomous University of Mexico image/svg+xml
      • Roberto Lindig-Cisneros Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México
        • Sabina Jiménez-Lemus National Autonomous University of Mexico image/svg+xml

          DOI:

          https://doi.org/10.19136/era.a12nV.4652

          Keywords:

          bacterial consortia, plant-microorganism interaction, growth promotion, Ecological restoration

          Abstract

          Plant growth-promoting bacteria (PGPB) improve plant development. In this study we evaluated the effect of Pseudomonasbacterial consortia on Fraxinus uhdei plants. A completely randomized experimental design was established with two seed treatments: scarified seeds (SE) and unscarified seeds (SS); and three inoculation treatments: control, single dose, and multiple doses (every 8 days). Accumulated growth, biomass (aerial, root, and total), nitrogen, phosphorus, and N/P ratio were evaluated. Using ANOVA with R software, significant differences were found with the multiple inoculation treatment for all response variables. Segmented regressions identified a cutoff point at 68 days in cumulative growth, indicating the optimal inoculation period. The results confirm that BPCVs are a viable strategy for improving the growth of plants intended for the restoration of degraded ecosystems.

          Downloads

          Download data is not yet available.

          References

          Ambriz E, Báez-Pérez A, Sánchez-Yáñez JM, Moutoglis P, Villegas J (2010) Fraxinus–Glomus–Pisolithus symbiosis: Plant growth and soil aggregation effects. Pedobiologia, 53(6): 369-373. https://doi.org/https://doi.org/10.1016/j.pedobi.2010.07.001

          Bolaños González MA, Paz Pellat F, Cruz Gaistardo CO, Argumedo Espinoza JA, Romero Benítez VM, De la Cruz Cabrera JC (2016) Mapa de erosión de los suelos de México y posibles implicaciones en el almacenamiento de carbono orgánico del suelo. Terra Latinoamericana, 34(3): 271-288.

          Cisneros González O, Santana Pérez J, Tomàs Ferrè E, Aletà Soler N, Ligos Martínez J, Turrientes Calzada A (2012) Fraxinus excelsior L. En: Navarro-Cerrillo R, Ocaña L, Peñuelas JL, Prada A, Pemán-García J, Serrada-Hierro R (Eds.), Técnicas de producción y manejo de materiales forestales de reproducción de interés en la restauración forestal (Vol. I, pp. 540-557).

          Criollo PJ, Obando M, Sánchez M. L, Bonilla R (2012) Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense. Ciencia y Tecnología Agropecuaria, 13(2): 189-195.

          De Paz M, Gobbi M, Raffaele E (2019) Revisión de las experiencias de revegetación con fines de restauración en bosques de la Argentina. Ecología Austral, 29(2): 194-207. https://doi.org/10.25260/EA.19.29.2.0.689

          Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 3(2–3): 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005.

          Fancis JK (1990) Fraxinus uhdei (Wenzig) Lingelsh. Fresno, tropical ash. SO-ITF-SM-28. United States Department of Agriculture, Southern Forest Experiment Station Institute of Tropical Forestry, San Juan, Puerto Rico. 4 pp.

          Gallardo-Salazar JL, Sáenz-Romero C, Lindig-Cisneros R, López-Toledo L, Blanco-García A, Endara-Agramont AR (2023) Three decades of remote sensing analysis on forest decline related to climate change: a bibliometric study. Cuadernos de Investigación Geográfica, 49: 69-87. http://doi.org/10.18172/cig.5639

          González H, Fuentes M. N (2017) Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista Ciencias Agrícolas, 34(1): 17-31. https://doi.org/https://doi.org/10.22267/rcia.173401.61

          Hernández-León R, González-Rodríguez A, Tapia-Torres Y (2022) Phosphorus Recycling, Biocontrol, and Growth Promotion Capabilities of Soil Bacterial Isolates from Mexican Oak Forests: An Alternative to Reduce the Use of Agrochemicals in Maize Cultivation. Applied Microbiology, 2(4): 965-980. https://doi.org/10.3390/applmicrobiol2040074

          Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology, 161(6), 464-471. https://doi.org/https://doi.org/10.1016/j.resmic.2010.04.007

          Holl KD (2023) Introducción a la restauración ecológica (Conservation International, Trans.; Holl KD, Lesage J, Toro O, Meli P, Vizcaya E, Miramontes O, Eds.). CopIt-arXives; Universidad Nacional Autónoma de México; Instituto de Física.

          Jiménez-Lemus S, Lindig-Cisneros R, Bonfil C, Larsen J, Rojas-Solís D (en revisión). Functional traits of plant growth promoting bacteria and their compatibility with different species of Pinus and Lupinus in terms of plant growth, and N and P nutrition.

          Kankariya RA, Chaudhari AB, Gavit PM, Dandi ND (2019) 2,4-Diacetylphloroglucinol: A Novel Biotech Bioactive Compound for Agriculture. In: Singh D, Gupta V, Prabha R (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_16

          Kumar A, Verma H, Singh VK, Singh PP, Singh SK, Ansari WA et al. (2017) Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_7

          Liu F, Xing S, Ma H, Du Z, Ma B (2013) Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings. Applied Microbiology and Biotechnology, 97: 4617–4625. https://doi.org/10.1007/s00253-012-4255-1

          Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants – Recent developments and prospects: A review. Microbiological Research, 252, 126861. https://doi.org/https://doi.org/10.1016/j.micres.2021.126861

          Pardo-Díaz S (2021) Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible: Bacterias promotoras del crecimiento vegetal: filogenia, microbioma, y perspectivas (1.a ed.). Corporación Colombiana de Investigación Agropecuaria (AGRO SAVIA). http://hdl.handle.net/20.500.12324/36978

          Racioppo A, d’Amelio A, De Santis A, Bevilacqua A, Corbo MR, Sinigaglia M (2023) Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy. Agronomy, 13(12): 2983. https://doi.org/10.3390/agronomy13122983

          Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SK (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard, Chemosphere, 62(5):741-748. https://doi.org/10.1016/j.chemosphere.2005.04.117.

          Ramírez-Mandujano CA, Granados García ME, Menor Zeferino JC, Ibarra Concepción E (2017) Control genético de crecimiento en vivero de colectas urbanas de Fraxinus uhdei (Wenzig) Lingelsheim. Biológicas Revista de la DES Ciencias Biológico Agropecuarias Universidad Michoacana de San Nicolás de Hidalgo, 19(1): 22-27.

          R Core Team. (2022) R: A Language and Environment for Statistical Computing (Version 4.2.2 (2022-10-31 ucrt)) [Computer software].

          Saavedra-Ramírez KA, Etter A, Ramírez A (2018) Tropical ash (Fraxinus uhdei) invading Andean Forest remnants in Northern South America. Ecological Processes, 7: 16. https://doi.org/10.1186/s13717-018-0131-y

          Sánchez Carrillo R, Guerra Ramírez P (2022) Pseudomonas spp. benéficas en la agricultura. Revista Mexicana de Ciencias Agrícolas, 13(4): 715-725. https://doi.org/10.29312/remexca.v13i4.2799

          Sánchez López DB, Gómez-Vargas RM, Garrido Rubiano MF, Bonilla Buitrago RR (2018) Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Revista Mexicana de Ciencias Agrícolas, 3(7): 1401–1415. https://doi.org/10.29312/remexca.v3i7.1346

          Striganavičiūtė G, Žiauka J, Sirgedaitė-Šėžienė V, Vaitiekūnaitė D (2021) Priming of Resistance-Related Phenolics: A Study of Plant-Associated Bacteria and Hymenoscyphus fraxineus. Microorganisms, 9(12): 2504. https://doi.org/10.3390/microorganisms9122504

          Villanueva Díaz J, Pérez Evangelista ER, Beramendi Orozco L, Cerano Paredes J (2015) Crecimiento radial anual del fresno (Fraxinus uhdei (Wenz.)Lingelsh.) en dos parques de la Comarca Lagunera. Revista Mexicana de Ciencias Forestales, 6(31): 40-57.

          Villaseñor-Aguilar J, Sotomayor-Castellanos J (2015) Caracterización dinámica de la madera de Fraxinus americana y Fraxinus uhdei. Revista de Aplicación Científica y Técnica 1: 43-53.

          Willan RL (1991) Capítulo 6. Procesamiento de semillas. En Guía para la manipulación de semillas forestales (Vol. 20/2). Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). http://www.fao.org/docrep/006/ad232s/ad232s00.htm#TOC

          Downloads

          Published

          2025-12-16

          How to Cite

          Cruzado-Vargas, A. L., Sánchez-Montaño, L., Lindig-Cisneros, R., & Jiménez-Lemus, S. (2025). Effect of inoculation with bacteria of the genus Pseudomonas on growth of Fraxinus uhdei plants. Ecosistemas Y Recursos Agropecuarios, 12(V). https://doi.org/10.19136/era.a12nV.4652

          Most read articles by the same author(s)