Humedales en dolina del norte de Quintana Roo, México: ecosistemas poco conocidos

Autores/as

DOI:

https://doi.org/10.19136/era.a6n17.1827

Resumen

Los humedales son los ecosistemas más productivos y amenazados del mundo. Si se encuentran en regiones donde domina la roca caliza se denominan humedales cársticos, un tipo de este humedal son los humedales en dolina. El objetivo del estudio fue caracterizar humedales en dolina del Norte de Quintana Roo, México. Se usaron descriptores de microtopografía, parámetros edáficos, fisicoquímica del agua y biomasa arbórea. Los resultados indican que los humedales en dolina son unidades primarias tipo P/b/h, sistema Palustre, subsistema depresión, clase estacional a intermitentemente inundado, forma ovoide o redonda con vegetación dominada por árboles tolerantes a la inundación en fondo rocoso con sustrato no consolidado. Se encontró mineralización de la materia orgánica, suelo con alta capacidad de retención de agua y elevado contenido de calcio y sílice. La biomasa se estimó entre 0.01 y 0.30 kg de carbono por árbol.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adame MF, Kauffman JB, Medina I, Gamboa JN, Torres O, Caamal J et al. (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE 8:e56569.

Aguilar Y, Bautista F, Mendoza ME, Frausto O, Ihl T (2016) Density of karst depressions in Yucatán state, Mexico. Journal of Cave and Karst Studies 78: 51–60.

AFC (2018) Carbon Sequestration. Alabama Forestry Commission. http://www.forestry.state.al.us/HowMuchCarbonHaveYourTreesStored.aspx?bv=5&s=0). Fecha de consulta 2 de febrero 2018.

APHA (2017) Method 4500-NO3-:Nitrogen (Nitrate). Standard Methods for the Examination of Water and Wastewater. DOI: 10.2105/SMWW.2882.089

Bautista Zúñiga F, Jiménez Osornio J, Navarro Alberto J, Manu A, Lozano R (2002) Micro-Relief and soil color as diagnostic properties in carstic leptosols. Terra Latinoamericana 21: 1-11.

Bautista F, Palacio-Aponte G, Quintana P, Zinck JA (2011) Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 35: 308-321.

Beltram G (2016) Karst Wetlands. In: Finlayson C, Milton G, Prentice R, Davidson N (eds). The Wetland Book. Springer Netherlands. pp: 1-17.

Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology 163: 16-20.

Bower CE, Holm-Hansen T (1980) A salicylate–hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37: 794-798.

Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12: 123-161.

Campos Cascaredo A, Moreno-Casasola P (2009) Suelos hidromorfos. In: Moreno-Casasola P, Warner B (eds) Breviario para describir, observar y manejar humedales Serie Costa Sustentable no 1. RAMSAR, Instituto de Ecología A.C., CONANP, US Fish and Wildlife Service, US State Department. Xalapa, Ver. México. pp: 111-130.

CONAGUA (2013) Lineamientos para la clasificación de humedales. Comisión Nacional del Agua, Subdirección General Técnica, Gerencia de Calidad del Agua. https://www.gob.mx/cms/uploads/attachment/file/165385/Clasificaci_n.pdf . Fecha de consulta: 30 enero 2018.

CONAGUA (2018) Sistema Nacional de Información del Agua. Comisión Nacional del Agua, Gerencia de Coordinación Interinstitucional. http://sina.conagua.gob.mx/sina/tema.php?tema=calidadAgua&ver=reporte&o=4&n=nacional. Fecha de consulta: 7 diciembre 2018.

Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, et al. (1997) The value of the world's ecosystem services and natural capital. Nature 387: 253.

Costanza R, de Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, et al. (2014) Changes in the global value of ecosystem services. Global Environmental Change 26: 152-158.

Cronk JK, Mitsch WJ (1994) Periphyton productivity on artificial and natural surfaces in constructed freshwater wetlands under different hydrologic regimes. Aquatic Botany 48:325-341.

Dise NB (2009) Peatland response to global change. Science 326: 810-811.

Drake HL, Horn MA, Wüst PK (2009) Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil. Environmental Microbiology Reports 1: 307-318.

Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039.

Gutiérrez F, Galve JP, Guerrero J, Lucha P, Cendrero A, Remondo J, et al. (2007) The origin, typology, spatial distribution and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream of Zaragoza city (NE Spain). Earth Surface Processes and Landforms 32 :912-928.

Hernández-Terrones L, Rebolledo-Vieyra M, Merino-Ibarra M, Soto M, Le-Cossec A, Monroy-Ríos E (2011) Groundwater pollution in a karstic region (NE Yucatan): baseline nutrient content and flux to coastal ecosystems. Water, Air, & Soil Pollution 218: 517-528.

Homoya MA, Hedge CL (1982) The upland sinkhole swamps and ponds of Harrison County, Indiana. Proceedings of the Indiana Academy of Science 92: 383-388.

INEGI (2016) Anuario estadístico y geográfico de Quintana Roo 2016. Instituto Nacional de Estadística y Geografía. México. 407 p.

http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2016/702825084370.pdf. Fecha de consulta: 2 de febrero de 2018.

Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. In Lambers H, Colmer TD (eds). Root Physiology: from Gene to Function. Plant Ecophysiology, Vol 4. Springer, Dordrecht. pp:1 75-195.

Kresic N (2013) Water in karst. McGraw-Hill. Estados Unidos de América. 707 p.

Leibowitz SG (2003) Isolated wetlands and their functions: an ecological perspective. Wetlands 23:517-531.

Loheide SP, Booth EG (2011) Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology 126: 364-376.

Lopez-Ramos E (1975) Geological summary of the Yucatán Peninsula. In Nairn AEM, Stehli FG (eds). The Gulf of Mexico and the Caribbean. Springer, Estados Unidos de América. pp: 257-282.

Marton JM, Creed IF, Lewis DB, Lane CR, Basu NB, Cohen M, et al. (2015) Geographically isolated wetlands are important biogeochemical reactors on the landscape. Bioscience 65: 408-418.

MEA - Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Wetlands and Water - Synthesis. World Resources Institute, Washington, DC. Estados Unidos de América. 68 p.

https://www.millenniumassessment.org/documents/document.358.aspx.pdf. Fecha de consulta: 2 de febrero de 2018.

Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecological Economics 35: 25-33.

Mitsch WJ, Gosselink JG (2007) Wetlands. 4° Ed. John Wiley & Sons. Estados Unidos de América. 547 p.

Mitsch WJ, Bernal B, Hernández ME (2015) Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services & Management 11: 1-4.

Moreno-Casasola P, Infante Mata D, López Rosas H (2012) Tropical freshwater swamps and marshes. In: Batzer D, Baldwin A (eds). Wetlands habitats of North America: ecology and conservation. University of California Press. Estados Unidos de América. pp: 267-282

Muñoz-Sánchez A, Domínguez-Domínguez R, Hernández-Sotomayor T (2015) Characterizing the relationship between aluminum content and pH in coffee (Coffea arabica L.) crop soils in Mexico. International Journal of Agriculture and Crop Science 8: 39-46.

Murray BR, Hose GC, Eamus D, Licary D (2005) Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Australian Journal of Botany 54:221-229.

Noe GB, Hupp CR, Rybicki NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems 16: 75-94.

Palacio Aponte AG, Noriega Trejo R, Zamora Crescencio P (2002) Caracterización físico-geográfica del paisaje conocido como "bajos inundables": El caso del Área Natural Protegida Balamkín, Campeche. Investigaciones geográficas 49: 57-73.

Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico. International Geology Review 44: 191-221.

Ramsar (2015) Nota Informativa Ramsar 7 - Estado de los humedales del mundo y de los servicios que prestan a las personas: una recopilación de análisis recientes. www.ramsar.org/library. Fecha de consulta: 2 de febrero de 2018.

Ramsar (2018) Ramsar Country profiles México. https://www.ramsar.org/wetland/mexico. Fecha de consulta: 2 de febrero de 2018.

Rohde MM, Froend R, Howard J (2017) A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 55: 293-301.

Semlitsch RD, Bodie JR (1998) Are small, isolated wetlands expendable? Conservation Biology 12: 1129-1133.

Serran JN, Creed IF (2016) New mapping techniques to estimate the preferential loss of small wetlands on prairie landscapes. Hydrological Processes 30: 396-409.

Seybold CA, Mersie W, Huang J, McNamee C (2002) Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22: 149-158.

Shenker M, Seitelbach S, Brand S, Haim A, Litaor MI (2005) Redox reactions and phosphorus release in re‐flooded soils of an altered wetland. European Journal of Soil Science 56: 515-525.

Descargas

Publicado

2019-05-03

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Cejudo, E., & Herrera-Caamal, K. G. (2019). Humedales en dolina del norte de Quintana Roo, México: ecosistemas poco conocidos. Ecosistemas Y Recursos Agropecuarios, 6(17), 207-218. https://doi.org/10.19136/era.a6n17.1827

Artículos más leídos del mismo autor/a