Aplicación de extractos de algas, NP’SZnO y microorganismos sobre la biomasa vegetal en tomate

Autores/as

  • Raúl Morales-Meléndez Universidad Autónoma Agraria Antonio Narro
  • Rebeca Betancourt-Galindo Centro de Investigación en Química Aplicada
  • Antonio Juárez-Maldonado Universidad Autónoma Agraria Antonio Narro
  • Armando Hernández-Pérez Universidad Autónoma Agraria Antonio Narro
  • José Antonio González-Fuentes Universidad Autónoma Agraria Antonio Narro
  • Bertha Puente-Urbina Centro de Investigación en Química Aplicada
  • Alonso Méndez-López Universidad Autónoma Agraria Antonio Narro

DOI:

https://doi.org/10.19136/era.a10n2.3206

Palabras clave:

crecimiento vegetativo, nanoparticulas, microorganismos, Ascophyllum nodosum

Resumen

La agricultura enfrenta serios desafíos que demandan la producción de una mayor cantidad de alimentos para las generaciones presentes y futuras, aunado a esto los factores bióticos y abiótico cada vez afectan los rendimientos de los cultivos, ante esta problemática, los bioestimulantes son una alternativa.
El objetivo del presente trabajo fue determinar el efecto de la aplicación foliar de extracto de algas (EA = 0, 500, 2 500 ppm), nanopartículas de óxido de zinc (NP’SZnO = 0, 50 y 250 mg L−1) y la coinoculación del sustrato con microorganismos rizosféricos (sin microorganismos [SMos] y con microorganismos empapados en el sustrato [CMos = 10 esporas mL−1 de Glomus intraradices y 1x106 UFC de Azospirillum brasilense]) sobre la acumulación de la biomasa en plantas de tomate. El experimento se estableció bajo un diseño de bloques al azar con arreglo factorial (3x3x2), con ocho repeticiones. El análisis de varianza identificó diferencias significativas entre los tratamientos, los factores analizados y las interacciones respectivas. Las aspersiones con EA mejoraron el peso seco de tallo (PST), biomasa de tallo (BT) y biomasa radicular (BR); mientras que, la aspersión con NP’SZnO incrementó el peso fresco radicular (PFR), peso seco de hoja (PSH), peso seco radicular (PSR), biomasa de hoja (BH) y BR; en tanto que, la coinoculación del suelo con microorganismos (CMos) mejoró el peso fresco de hoja (PFH), PSR y BR. La aplicación de los bioestimulantes mostró efecto estimulante sobre el crecimiento vegetativo de las plantas de tomate.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium Dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation and Development 29: 1065-1073.

Abkhoo J, Sabbagh SK (2016) Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. Journal of Applied Phycology 28: 1333-1342.

Ahmed SM (2021) Influence of bio-fertilizers and addition methods on growth, yield, and quality of sweet pepper under green house. Diyala Agricultural Sciences Journal 13: 10-23.

Ali O, Ramsubhag A, Jayaraman J (2021) Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 10: 531. DOI: 10.3390/plants10030531.

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63: 3523-3543.

Bala R, Kalia A, Dhaliwal SS (2019) Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutrition 19: 379-389.

Banakar SN, PrasannaKumar MK, Mahesh HB, Parivallal PB, Puneeth ME, Gautam C, Narayan, SS (2022) Red-seaweed biostimulants differentially alleviate the impact of fungicidal stress in rice (Oryza sativa L.). Scientific Reports 12: 5993. DOI: 10.1038/s41598-022-10010-8.

De Mendonça Júnior AF, Dos Santos Rodrigues APM, Júnior RS, Negreiros AMP, Bettini MO, Freitas CDM, Gomes TRR (2019) Seaweed extract Ascophyllum nodosum (L.) on the growth of watermelon plants. Jour- nal of Experimental Agriculture International 31: 4. DOI: 10.9734/JEAI/2019/v31i430080.

Delgado-Ramírez CS, Hernández-Martínez R, Sepúlveda E (2021) Rhizobacteria associated with a native solana- ceae promote plant growth and decrease the effects of Fusarium oxysporum in tomato. Agronomy 11: 579. DOI: 10.3390/agronomy11030579.

Di-Barbaro G, Andrada H, Del Valle E, Brandan de Weht C (2021) Evaluation of the effect of Azospirillum brasilense and Mycorrhizal fungi of the soil in Yacón grown in a greenhouse. Open Journal of Agricultural Research 1: 8-15.

Du-Jardin P (2015) Plants biostimulants: Definition, concept, main categories, and regulation. Scientia Horticul- turae 196: 3-14.

Elemike EE, Uzoh IM, Onwudiwe D, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9: 499. DOI: 10.3390/app9030499.

Faizan M, Hayat S (2019) Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Polish Journal of Natural Sciences 34: 87-105.

Fan D, Hodges DM, Critchley AT (2013) Communications in soil science and plant analysis a commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communications in Soil Science and Plant Analysis 44: 1873-1884.

Goñi O, Quille P, O’connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry 126: 63-73.

González-González MF, Ocampo-Álvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Cas- tillo K, Becerril-Espinosa, Hernández-Herrera RM (2020) Physiological, ecological, and biochemical impli- cations in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science 11: 999. DOI: 10.3389/fpls.2020.00999.

Han X, Xi Y, Zhang Z, Mohammadi MA, Joshi J, Borza T, Wang-Pruski G (2021) Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicology and Environmental Safety 210: 111873. DOI: 10.1016/j.ecoenv.2020.111873.

Hernández JLG, Alvarado MCR, Rangel PP, Nieto-Garibay A, Murillo-Amador B, Ruiz-Espinoza FH, Puente EOR (2018) Growth and oil yield parameters of the Capsicum annuum var aviculare associated to the beneficial bacterium Bacillus amyloliquefaciens and Azospirillum halopraeferens under field conditions. Biotecnia 20: 59-64.

Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer. Singapore. pp: 135-191.

Hsieh CH (2007) Spherical zinc oxide nano particles from zinc acetate in the precipitation method. Journal of the Chinese Chemical Society 54: 31-34.

Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution 242: 1518-1526.

Itroutwar PD, Kasivelu G, Raguraman V, Malaichamy K, Sevathapandian SK (2020) Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology 29: 101778. DOI: 10.1016/j.bcab.2020.101778.

Joshi-Paneri J, Chamberland G, Donnelly D (2020) Effects of Chelidonium majus and Ascophyllum nodosum extracts on growth and photosynthesis of soybean. Acta Agrobotanica 73: 1. DOI: 10.5586/aa.7313.

Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A (2021) Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. Journal of Advanced Research 31: 113-126.

Kahromi S, Najafi F (2020) Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis. Journal of Plant Process and Function 9: 37.

Kaur I (2020) Seaweeds: Soil Health Boosters for Sustainable Agriculture. In: Giri B, Varma A (eds) Soil Health. Soil Biology. Springer, Cham. UK. pp: 163-182.

Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131-139.

Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology 2011. ID de artículo 696535. DOI: 10.1155/2011/696535.

Mahusook SS, Rajathi F, Maharifa H, Sharmila R (2021) Comparative study of agarophytes-gracilaria edulis and gelidiella acerosa as biostimulant and application of agar for water-holding in soil and plant growth promotion. Agricultural Science Digest-A Research Journal 41: 21-27.

Mashayekhi K, Dehkordi AG, Mousavizadeh, SJ, Rahnama K (2021) The effect of nitrogen and phosphorus supplier bacteria on the characteristics of tomato seedling. Iranian Journal of Horticultural Science 52: 113-123.

Méndez-Argüello B, Vera-Reyes I, Mendoza-Mendoza E, García-Cerda LA, Puente-Urbina BA, Lira-Saldívar RH (2016) Promoción del crecimiento en plantas de Capsicum annuum por nanopartículas de óxido de zinc. Nova Scientia 8: 140-156.

Ozbay N, Demirkiran AR (2019) Enhancement of growth in ornamental pepper (Capsicum annuum L.) plants with ®

application of a commercial seaweed product, stimplex . Applied Ecology and Environmental Research 17: 4361-4375.

Pérez-Velasco EA, Valdez-Aguilar LA, Betancourt-Galindo R, Martínez-Juárez J, Lozano-Morales SA, González- Fuentes JA (2021) Gas exchange parameters, fruit yield, quality, and nutrient status in tomato are stimulated by ZnO nanoparticles of modified surface and morphology and their application form. Journal of Soil Science and Plant Nutrition 21: 991-1003.

Pessarakli M, Szabolcs I (2019) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press. USA. pp: 1-16.

Rodríguez-Larramendi LA, Guevara Hernández FLO, Arias MA, Reyes-Muro L, Campos-Saldaña RA, Salas- Marina MÁ (2020) Leaf growth and biomass accumulation in radish (Raphanus sativus L.) inoculated with rhizosphere microorganisms. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo 52: 78-87.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160-166.

Seppelt R, Klotz S, Peiter E, Volk M (2022) Agriculture and food security under a changing climate: An underes- timated challenge. Iscience 25(12): 105551. DOI: 10.1016/j.isci.2022.105551.

Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B (2019) Ascophyllum nodosum-based bios- timulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10: 655. DOI: 10.3389/fpls.2019.00655.

SIAP-SADER (2020) Panorama agroalimentario 2020. Secretaria de agricultura y desarrollo rural, edición 2020, Servicio de Información Agroalimentaria y Pesquera. Ciudad de México. pp: 84-85.

Singh D, Kumar A (2018) Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology 27: 23-31.

Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15: 134-154.

Todeschini V, Ait Lahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Lingua G (2018) Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science 9: 1611. DOI: 10.3389/fpls.2018.01611.

Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiology and Biochemistry 110: 59-69.

Wally AT, Critchley D, Hiltz JS, Craigie X, Han LI, Zaharia SR, Prithiviraj B (2013) Erratum to: regulation of phytohormone biosynthesis and accumulation in arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32: 340-341.

Yagmur B, Gunes A (2021) Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanzen 73: 219-228.

Descargas

Publicado

2023-05-29

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Morales-Meléndez, R., Betancourt-Galindo , R., Juárez-Maldonado , A., Hernández-Pérez, A., González-Fuentes , J. A., Puente-Urbina, B., & Méndez-López, A. (2023). Aplicación de extractos de algas, NP’SZnO y microorganismos sobre la biomasa vegetal en tomate. Ecosistemas Y Recursos Agropecuarios, 10(2). https://doi.org/10.19136/era.a10n2.3206

Artículos similares

1-10 de 294

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 > >>