Respuestas morfológicas a la biofertilización y aplicación de enmiendas húmicas en plantas de mezquite
DOI:
https://doi.org/10.19136/era.a12n2.4077Palabras clave:
Azospirillum brasilense, crecimiento vegetativo, Prosopis laevigata, vermicompostResumen
La aplicación de humus y bacterias promotoras de crecimiento son métodos de biofertilización cada vez más usados en cultivos agrícolas con la finalidad de disminuir el uso de fertilizantes inorgánicos o sintéticos. Sin embargo, su implementación en el cultivo de especies arbóreas en vivero, así como sus implicaciones en la producción de plantas con fines de reforestación ha sido escasamente estudiado. En el presente estudio se evaluó fertilización con humus líquido de lombriz y la inoculación con Azospirillum brasilense en plantas de mezquite (Prosopis laevigata H. & B. ex Willd.) en la etapa de vivero. Se estableció un experimento factorial con tres dosis de enmienda húmica: 1) 0 (control), 2) 60 y 3) 120 mL L-1; y dos niveles del inoculante: 1) sin aplicación y 2) con aplicación. Se monitoreó la evolución de la altura y diámetro de las plantas durante el crecimiento vegetativo y su distribución de biomasa al finalizar el cultivo. Los resultados mostraron un efecto positivo de la fertilización con humus de lombriz, en el crecimiento de plantas de mezquite en vivero, pero solo con la dosis baja. Por otra parte, contrario a lo esperado, la inoculación con la bacteria A. brasilense no mejoró el crecimiento de las plantas de mezquite. Incluso, en combinación con una dosis alta de humus, la inoculación inhibió el crecimiento de las plantas. Con estos resultados, se confirma que es posible diseñar esquemas de biofertilización para producir plantas forestales en vivero, pero se resaltan las limitantes que deben considerarse en su implementación.
Descargas
Referencias
Aguirre-Medina JF, Mina-Briones FO, Cadena-Iñiguez J, Dardó-Zunun JD, Hernández-Sedas DA (2014) Crecimiento de Cedrela odorata L. biofertilizada con Rhizophagus intraradices y Azospirillum brasilense en vivero. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20(3): 177-186. https://doi.org/10.5154/r.rchscfa.2014.01.001
Asif M, Mughal AH, Bisma R, Mehdi Z, Saima S, Ajaz M, Malik MA, Masood A, Sidique S (2018) Application of different strains of biofertilizers for raising quality forest nursery. International Journal of Current Microbiology and Applied Sciences 7(10): 3680-3686. https://doi.org/10.20546/ijcmas.2018.710.425
Basave-Villalobos E, Valenzuela-Núñez LM, García-Rodríguez JL, Sarmiento-López H, García-Pérez JL, Calixto-Valencia CG, Sigala JA (2024) Morpho-physiological and biochemical responses in Prosopis laevigata seedlings to varied nitrogen sources. Nitrogen 5(4): 857-870. https://doi.org/10.3390/nitrogen5040055
Bashan LE, Hernández JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation - A comprehensive evaluation. Applied Soil Ecology 61: 171-189. https://doi.org/10.1016/j.apsoil.2011.09.003
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48. https://doi.org/10.18637/jss.v067.i01
Cardoso-Felix F, Pereira de Matos DC, Porto-Latoh L, de Almeida Maggioni R, Nogueira AC (2021) Azospirillum brasilense inoculation on seed germination and initial growth of seedlings of native forest species. Floresta 51(4): 855-863. https://doi.org/10.5380/rf.v51 i4. 73520
Carrillo-Parra A, Hapla F, Mai C, Garza-Ocañas F (2011) Durabilidad de la madera de Prosopis laevigata y efecto de sus extractos en hongos que degradan la madera. Madera y Bosques 17(1): 7-21. https://doi.org/10.21829/myb.2011.1711151
Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, Donadio F, Torres D, Rosas S, Olivera-Pedrosa F, de Souza E, Díaz-Zorita M, de-Bashan L, Mora V (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils 56: 461-479. https://doi.org/10.1007/s00374-020-01463-y
Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiology Letters 276(1): 1–11. https://doi.org/10.1111/j.1574-6968.2007.00878.x
Díaz-Batalla L, Hernández-Uribe JP, Román-Gutiérrez AD, Cariño-Cortés R, Castro-Rosas J, Téllez-Jurado A, Gómez-Aldapa CA (2018) Chemical and nutritional characterization of raw and thermal-treated flours of Mesquite (Prosopis laevigata) pods and their residual brans. CYTA-Journal of Food 16(1): 444-451. https://doi.org/10.1080/19476337.2017.1418433
Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biology and Fertility of Soils 36: 284-297. https://doi.org/10.1007/s00374-002-0534-9
Domínguez-Núñez JA, Muñoz D, Planelles R, Grau JM, Artero F, Anriquez A, Albanesi A (2012) Effects of inoculation with Azospirillum brasilense on the quality of Prosopis juliflora seedlings. Forest Systems 21(3): 364-372. https://doi.org/10.5424/fs/2012213-02135
Fernandes dos Santos R, da Cruz SP, Botelho GR, Vasconcelos-Flores A (2018) Inoculation of Pinus taeda seedlings with plant growth-promoting rhizobacteria. Floresta e Ambiente 25(1): e20160056. http://dx.doi.org/10.1590/2179-8087.005616
Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters 326(2): 99-108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edition. Sage Publications, Thousand Oaks, CA. 608p.
Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6: 1-13. https://doi.org/10.1186/s13568-015-0171-y
García-Monjaras S, Santos-Díaz RE, Flores-Najera MJ, Cuevas-Reyes V, Meza-Herrera CA, Mellado M, Chay-Canul AJ, Rosales-Nieto CA (2021) Diet selected by goats on xerophytic shrubland with different milk yield potential. Journal of Arid Environments 186: 104429. https://doi.org/10.1016/j.jaridenv.2020.104429
Gonzalez EJ, Hernandez JP, de-Bashan LE, Bashan Y (2018) Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Applied Soil Ecology 129: 84-93. https://doi.org/10.1016/j.apsoil.2018.04.011
Gutiérrez-Miceli FA, García-Gómez RC, Oliva-Llaven MA, Montes-Molina JA, Dendooven L (2017) Vermicomposting leachate as liquid fertilizer for the cultivation of sugarcane (Saccharum sp.). Journal of Plant Nutrition 40(1): 40-49. https://doi.org/10.1080/01904167.2016.1193610
Gutiérrez-Miceli FA, Llaven MAO, Nazar PM, Sesma BR, Álvarez-Solís JD, Dendooven L (2011) Optimization of vermicompost and worm-bed leachate for the organic cultivation of radish. Journal of Plant Nutrition 34(11): 1642-1653. https://doi.org/10.1080/01904167.2011.592561
Juntunen ML, Hammar T, Rikala R (2002) Leaching of nitrogen and phosphorus during production of forest seedlings in containers. Journal of Environmental Quality 31(6): 1868–1874. https://doi.org/10.2134/jeq2002.1868
Koskey G, Avio L, Turrini A, Sbrana C, Bàrberi P (2023) Biostimulatory effect of vermicompost extract enhances soil mycorrhizal activity and selectively improves crop productivity. Plant and Soil 484(1): 183-199. https://doi.org/10.1007/s11104-022-05783-w
Lenth R (2019) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.7.
Leyva LA, Bashan Y (2008) Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. Plant Physiology and Biochemistry 46(10): 898-904. https://doi.org/10.1016/j.plaphy.2008.05.011
Lim SL, Wu TY, Lim PN, Shak KPY (2015) The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture 95(6): 1143-1156. https://www.doi.org/10.1002/jsfa.6849
Mata-Balderas JM, Cavada-Prado KA, Sarmiento-Muñoz TI, González-Rodríguez H (2022) Monitoreo de la supervivencia de una reforestación con especies nativas del matorral espinoso tamaulipeco. Revista Mexicana de Ciencias Forestales 13(71): 28-52. https://doi.org/10.29298/rmcf.v13i71.1229
Molina-Guerra VM, Mora-Olivo A, Alanís-Rodríguez E, Soto-Mata BE, Patiño-Flores AM (2019) Plantas características del matorral espinoso tamaulipeco en México. 1ra. Edición. Editorial Universitaria de la Universidad Autónoma de Nuevo León. Monterrey, México.114p.
Monroy-Ata A, Estevez-Torres J, García-Sánchez R, Ríos-Gómez R (2007) Establecimiento de plantas mediante el uso de micorrizas y de islas de recursos en un matorral xerófilo deteriorado. Botanical Sciences 80(S): 49-57. https://doi.org/10.17129/botsci.1756
Moridi A, Zarei M, Moosavi AA, Ronaghi A (2021) Effect of liquid organic fertilizers and soil moisture status on some biological and physical properties of soil. Polish Journal of Soil Science 54(1): 41-58. https://doi.org/10.17951/pjss/2021.54.1.41
Muro-González DA, Mussali-Galante P, Valencia-Cuevas L, Flores-Trujillo K, Tovar-Sánchez E (2020) Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environmental Science and Pollution Research 27(32): 40187-40204. https://doi.org/10.1007/s11356-020-10026-5
Patiño-Flores AM, Alanís-Rodríguez E, Molina-Guerra VM, González-Rodríguez H, Jurado E, Aguirre-Calderón OA (2019) Almacenamiento de carbono en la reserva ecológica de Ternium en Pesquería, Nuevo León. Revista Mexicana de Ciencias Forestales 10(54): 39-57. https://doi.org/10.29298/rmcf.v10i54.498
Pereg L, de-Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil 399: 389-414. https://doi.org/10.1007/s11104-015-2778-9
Prieto-Ruíz JA, Aldrete A, Hernández-Díaz JC, Goche-Télles JR (2016) Causas de mortalidad de las reforestaciones y propuestas de mejora. En: Prieto-Ruíz JA, Goche-Télles JR (compiladores). Las Reforestaciones en México. Problemas y alternativas de solución. UJED. Durango, México. pp. 55–66.
Quiñones-Gutiérrez A, González-Ontiveros V, Chávez-Pérez JR, Vargas-Martínez A, Barrientos-Díaz F (2013) Evaluación de inoculantes promotores de crecimiento en la producción de plantas de mezquite [Prosopis laevigata (Humb. Et Bonpl. ex Willd.) MC Johnst.] en Durango. Revista Mexicana de Ciencias Forestales 4(20): 42-80. https://doi.org/10.29298/rmcf.v4i20.371
R Core Team (2022) R: A Language and Environment for Statistical Computing. R Fundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Fecha de consulta: 25 de febrero de 2024.
Ríos-Gómez R, Salas-García CE, Monroy-Ata A, Solano E (2010) Salinity effect on Prosopis laevigata seedlings. Terra Latinoamericana 28(2): 99-107.
Rodríguez-Sauceda EN, Rojo-Martínez GE, Ramírez-Valverde B, Martínez-Ruiz R, Cong-Hermida MC, Medina-Torrez SM, Piña-Ruiz HH (2014) Análisis técnico del árbol del mezquite (Prosopis laevigata Humb. & Bonpl. ex Willd.) en México. Ra Ximhai 10(3): 173-193.
Shourije FA, Sadeghi H, Pessarakli M (2014) Effects of different types of composts on soil Characteristics and morphological traits of two dry rangeland species. Journal of Plant Nutrition 37(12): 1965-1980. https://doi.org/1080/01904167.2014.911323
Tang Q, Cotton A, Wei Z, Xia Y, Daniell T, Yan X (2022) How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Science of the Total Environment 803: 149933. https://doi.org/10.1016/j.scitotenv.2021.149933
Vásquez-Méndez R, Ventura-Ramos E, Oleschko K, Hernández-Sandoval L, Francois-Parrot J, Nearing M (2010) Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena 80(3): 162-169. https://doi.org/10.1016/j.catena.2009.11.003
Villegas-Espinoza JA, Rueda-Puente EO, Murillo-Amador B, Puente ME, Grimaldo-Juárez O, Avilés-Marín SM, Ponce-Medina JF (2010) Efecto de la inoculación de Azospirillum halopraeferens y Bacillus amyloliquefaciens en la germinación de Prosopis chilensis. Tropical and Subtropical Agroecosystems 12(1): 19-32.
Xue J, Bakker M, Milin S, Graham D (2022) Enhancement in soil fertility, early plant growth and nutrition and mycorrhizal colonization by vermicompost application varies with native and exotic tree species. Journal of Soils and Sediments 22: 1-15. https://doi.org/10.1007/s11368-022-03180-5
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ecosistemas y Recursos Agropecuarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
This work is licensed under CC BY-NC-ND 4.0