Rendimiento de Cratylia argentea (desvaux) o. Kuntze a diferentes estrategias de manejo

Autores/as

DOI:

https://doi.org/10.19136/era.a12n2.4089

Palabras clave:

Leguminosa, altura de corte, Frecuencia de corte, epoca de nortes

Resumen

En el trópico mexicano la ganadería es una de las actividades económicas de mayor importancia cuya principal fuente de alimentación son las pasturas nativas; estas presentan diferentes rendimientos en función de su estacionalidad. Por tal motivo, el objetivo del presente proyecto fue estudiar el comportamiento productivo de Cratylia argentea, frente a diferentes estrategias de manejo, para determinar las mejores combinaciones durante la época de nortes en Tzucacab, Yucatán, México. Se utilizaron seis tratamientos los cuales fueron determinados por la interacción entre dos alturas (40 y 60 cm) y tres frecuencias de corte (30, 60 y 90 días). Se evaluó el rendimiento de materia seca (MS), longitud brotes (LB), número de brotes basales (BB) y la relación hoja tallo (RHT). La información se sometió a un análisis de varianza utilizando el procedimiento PROC MIXED de SAS 9.4 y la comparación de medias con la prueba de Tukey (P=0.05). Los resultados mostraron que no se encontraron diferencias significativas en el efecto de la altura (P=0.065) y la interacción altura×frecuencia (P=0.386). Sin embargo, la frecuencia de corte (30, 60 y 90 días) permitió una mayor acumulación de biomasa conforme el tiempo entre podas fue mayor (P<0.0001). Los mayores rendimientos de MS se obtuvieron 90 días posteriores a la poda de uniformización para ambas alturas de corte (P<0.05). Se concluye que el rendimiento de MS se obtiene al realizar una frecuencia de corte de 90 días sin que se vea afectado por las alturas de corte utilizadas en este proyecto.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Almeida BAS, Mistura C, dos Santos-Nunes TS, Oliveira-Borges R, Avila-Queiroz MA, Oliveira GM, Araújo EJB, y Filho PAF (2017) Contribution of basal and aerial tillers to forage production dynamics in Tifton-85 bermudagrass irrigated with fishpond wastewater and fertilized with NPK. Ciências Agrárias 38(6): 3725-3737. https://doi.org/10.5433/1679-0359.2017v38n6p3725

Almeida JCC, Morais LF, Araújo RP, Morenz MJF, Abreu JBR, Soares FA (2019) Dry matter production and chemical composition of tropical forage legumes under different shading levels. Acta Scientiarum. Animal Sciences 41: e43526. https://doi.org/10.4025/actascianimsci.v41i1.43526

Álvarez-Carrillo F, Casanoves F, Cuellar-Medina Y, Ortiz-Meneses JF, Balanta-Martínez VJ, Celis Parra GA (2023) Nutritional quality of Piptocoma discolor and Cratylia argentea as a non-timber forest products for animal feed in the Caquetá province. The Journal of Agriculture and Environment for International Development 116(2): 109-120. https://doi.org/10.36253/jaeid-13102

Baars C, Barbir J, Paulino Pires-Eustachio JH (2023) How can climate change impact human health via food security? A bibliometric analysis. Environments 10(196): 1-19. https://doi.org/10.3390/environments10110196

Baker S, Lynch MB, Godwin F, Brennan E, Boland TM, Evans ACO, Kelly AK, Sheridan H (2023) Dry-matter production and botanical composition of multispecies and perennial ryegrass swards under varying defoliation management. Grass and Forage Science 78(3): 390-401. https://doi.org/10.1111/gfs.12615

Boddey RM, Casagrande DR, Homem BGC, Alves BJR (2020) Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass and Forage Science 75(4): 357-371. https://doi.org/10.1111/gfs.12498

Brougham RW (1956) Effect of intensity of defoliation on regrowth of pasture. Australian Journal of Agricultural Research 7(5): 377-387. https://doi.org/10.1071/ar9560377

Brougham RW (1958) Interception of light by the foliage of pure and mixed stands of pasture plants. Australian Journal of Agriccultural Research 9(1): 39-52. https://doi.org/10.1071/ar9580039

Brunetti HB, Cavalcanti PP, Dias CTS, Pezzopane JRM, Sanos PM (2020) Climate risk and seasonal forage production of Marandu palisadegrass in Brazil. Anais da Academia Brasileira de Ciências 92: e20190046. https://doi.org/10.1590/0001-3765202020190046

Buttler A, Mariotte P, Meisser M, Guillaume T, Signarbieux C, Vitra A, Preux S, Mercier G, Quezada J, Bragazza L, Gavazov K (2019) Drought-induced decline of productivity in the dominant grassland species Lolium perenne L. depends on soil type and prevailing climatic conditions. Soil Biology and Biochemistry 132: 47-57. https://doi.org/10.1016/j.soilbio.2019.01.026

Chapman DF (2016) Using ecophysiology to improve farm efficiency: Application in temperate dairy grazing systems. Agriculture 6(2): 1-19. https://doi.org/10.3390/agriculture6020017

Crist S, Mori J, Smith R L (2020) Flooding on beef and swine farms: A scoping review of effects in the Midwestern United States. Preventive Veterinary Medicine 184: 105158. https://doi.org/10.1016/j.prevetmed.2020.105158

Da-Silva S, Sbrissia A, Pereira L (2015) Ecophysiology of C4 forage grasses—understanding plant growth for optimising their use and management. Agriculture 5(3): 598-625. https://doi.org/10.3390/agriculture5030598

De-Jesus FLF, Sanches AC, de-Souza DP, Mendonça FC, Gomes EP, Santos RC, Santos JEO, da-Silva JLB (2021) Seasonality of biomass production of irrigated Mombaça ‘Guinea grass’. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 71(3): 156-164. https://doi.org/10.1080/09064710.2020.1863456

dos-Santos-Oliveira J, Depablos L, Homem BGC, Ferreira I M, Boddey RM, Paiva AJ, Lara MAS, Casagrande DR (2023) Forage intake and nitrogen metabolism of beef cattle grazing palisadegrass-calopo mixed pasture managed using canopy light interception. Grass and Forage Science 78(3): 416-424. https://doi.org/10.1111/gfs.12613

Enríquez-Quiroz JF, Esqueda-Esquivel VA, Martínez-Méndez D (2021) Rehabilitación de praderas degradadas en el trópico de México. Revista Mexicana de Ciencias Pecuarias 12: 243-260. https://doi.org/10.22319/rmcp.v12s3.5876

Enríquez-Quiroz JF, Garay AH, Pérez JP, Carrillo ARQ, Cossio JGM (2003) Densidad de siembra y frecuencias de corte en el rendimiento de Cratylia argentea (desvaux) o. Kuntze en el sur de veracruz. Revista Mexicana de Ciencias Pecuarias 41(1): 75-84.

Feitosa O de S, Leite R da C, Alexandrino E, Pires T de JS, Oliveira LBT de, Paula JJ de, Santos AC dos (2022) Forage performance and cattle production as a function of the seasonality of a Brazilian tropical region. Acta Scientiarum. Animal Sciences 44. https://doi.org/10.4025/actascianimsci.v44i1.53779

Fulkerson WJ, Donaghy DJ (2001) Plant-soluble carbohydrate reserves and senescence - key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Australian Journal of Experimental Agriculture 41(2): 261-275. https://doi.org/10.1071/ea00062

García-Favre J, Zhang Y, López IF, Donaghy DJ, Cranston LM, Kemp PD (2021) Decreasing defoliation frequency enhances Bromus valdivianus Phil. growth under low soil water levels and interspecific competition. Agronomy 11(7): Article 7. https://doi.org/10.3390/agronomy11071333

Gastal F, Lemaire G (2015) Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: Review of the underlying ecophysiological processes. Agriculture 5(4): 1146-1171. https://doi.org/10.3390/agriculture5041146

Golińska B, Vishwakarma R, Brophy C, Goliński P (2023) Positive effects of plant diversity on dry matter yield while maintaining a high level of forage digestibility in intensively managed grasslands across two contrasting environments. Grass and Forage Science 78(4): 438-461. https://doi.org/10.1111/gfs.12644

Grecequet M (2023) Slower population growth in hot and dry conditions. Communications Earth and Environment 4: 259. https://doi.org/10.1038/s43247-023-00917-z

Hernández M, Hernández I (2005) Utilización de arbóreas como abono verde y manejo de la defoliación en sistemas de corte y acarreo In: Leonel Simón Guelmes (Editor). El silvopastoreo un nuevo concepto de pastizal. Editorial Universitaria, Guatemala. pp 109-130.

Lascano C, Rincón A, Plazas C, Ávila P, Bueno G, Argel PJ (2002) Cultivar Veranera [Cratylia argentea (Desvaux) O. Kuntze] - Leguminosa arbustiva de usos múltiples para zonas con períodos prolongados de sequía en Colombia. Corporación Colombiana de Investigación Agropecuaria. Centro Internacional de Agricultura Tropical, Cali, Colombia. 28p.

Lee MA, Davis AP, Chagunda MGG, Manning P (2017) Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 14(6): 1403-1417. https://doi.org/10.5194/bg-14-1403-2017

Li T, Peng L, Wang H, Zhang Y, Wang Y, Cheng Y, Hou F (2023) Multiple cutting increases forage productivity and enhances legume pasture stability in a rainfed agroecosystem. Annals of Agricultural Sciences 68(2): 126-136. https://doi.org/10.1016/j.aoas.2023.12.002

Lobo M, Acuña V (2001) Efecto de la edad de rebrote y la altura de corte sobre la producción de Cratylia argentea en el trópico subhúmedo de Costa Rica. In: Holmann F, Lascano C (eds) Sistemas de alimentación con leguminosas para intensificar fincas lecheras. Centro Internacional de Agricultura Tropical, Consorcio Tropileche e International Livestock Research Institute. Colombia. pp. 35-38.

Lugo-Soto M, Vibert E, Betancourt M, González I, Orozco A (2009) Efecto de la altura y edad de corte en la producción de materia seca y proteína bruta de Cratylia argentea (Desvaux) O. Kuntze bajo condiciones del piedemonte barinés, Venezuela. Zootecnia Tropical 27(4): 457-464.

Maass BL (1996) Evaluación agronómica de Cratylia argentea (Desvaux) O. Kuntze en Colombia. In: Pizarro EA; Coradin L, eds. Potencial del género Cratylia como leguminosa forrajera. CIAT Documento de Trabajo no. 158. Centro Internacional de Agricultura Tropical (CIAT); Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); Centro de Pesquisa Agropecuária do Cerrado (CPAC), Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnología (CENARGEN), Cali, Colombia. pp. 62–74.

Mariotte P, Cresswell T, Johansen MP, Harrison JJ, Keitel C, Dijkstra FA (2020) Plant uptake of nitrogen and phosphorus among grassland species affected by drought along a soil available phosphorus gradient. Plant and Soil 448(1-2): 121-132. https://doi.org/10.1007/s11104-019-04407-0

Matrangolo WJR, Silva IFH da, Almeida LG de, Malta PCC, Cruz SCB da, Gomes SX (2019) A leguminosa “Cratylia Argentea” e a construção de uma rede de pesquisa participativa. In: Andrade DF (ed) Agroecologia em foco. Editora Poisson Vol. 3. Belo Horizonte, Minas Gerais, Brasil. pp. 8-24.

Meisser M, Vitra A, Deléglise C, Dubois S, Probo M, Mosimann E, Buttler A, Mariotte P (2019) Nutrient limitations induced by drought affect forage N and P differently in two permanent grasslands. Agriculture Ecosystems and Environment 280: 85-94. https://doi.org/10.1016/j.agee.2019.04.027

Micke B, Parsons D (2022) Using botanical resources to select wild forage legumes for domestication in temperate grassland agricultural systems. Agronomy for Sustainable Development 43(1): 1. https://doi.org/10.1007/s13593-022-00853-w

Mpongwana S, Manyevere A, Mupangwa J, Mpendulo CT, Mashamaite CV (2024) Improving soil fertility through dual inoculation with arbuscular mycorrhizal fungi and Rhizobium on a eutric cambisol cultivated with forage legumes in a semi-arid region. Heliyon 10(2): e24817. https://doi.org/10.1016/j.heliyon.2024.e24817

Nuñez-Hidalgo I, Meseguer-Ruiz O, Serrano-Notivoli R, Sarricolea P (2023) Population dynamics shifts by climate change: High-resolution future mid-century trends for South America. Global and Planetary Change 226: 104155. https://doi.org/10.1016/j.gloplacha.2023.104155

Ortega G, Berberian N, Chilibroste P (2024) The effects of stocking rate, residual sward height, and forage supplementation on forage production, feeding strategies, and productivity of milking dairy cows. Frontier in Animal Science 5. https://doi.org/10.3389/fanim.2024.131915

Palma MNN, Reis WLS, Rodrigues JPP, Silva TE, Franco MO, Rennó LN, Detmann E (2023) Strategies of energy supplementation for cattle fed tropical forage and infrequently supplemented with protein. Animal Feed Science and Technology 297: 115599. https://doi.org/10.1016/j.anifeedsci.2023.115599

Quintero-Anzueta S, Molina-Botero IC, Ramirez-Navas JS, Rao I, Chirinda N, Barahona-Rosales R, Moorby J, Arango J (2021) Nutritional evaluation of tropical forage grass alone and grass-legume diets to reduce in vitro methane production. Frontiers in Sustainable Food Systems 5. https://doi.org/10.3389/fsufs.2021.663003

Santana MO, Medina MS (2005) Producción de materia seca y calidad forrajera de Cratylia argentea (desv) O. Kuntze bajo tres alturas y edades de corte en bosque húmedo tropical. Livestock Research for Rural Development 17(10): 1-13.

Shen H, Dong S, Li S, Xiao J, Han Y, Yang M, Zhang J, Gao X, Xu Y, Li Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC (2019) Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan plateau. Agriculture, Ecosystems and Environment 280: 161-168. https://doi.org/10.1016/j.agee.2019.04.029

State of the Tropics (2022) COVID-19 in the Tropics. James Cook University, Townsville, Australia.

Solomon JKQ (2022) Legumes for animal nutrition and dietary energy. En: Meena RS, Kumar S (eds) Advances in legumes for sustainable Intensification. Academic Press. USA. pp. 227-244. https://doi.org/10.1016/B978-0-323-85797-0.00026-4

Stür WW, Shelton HM, Gutteridge RC (1994) Defoliation management of forage tree legumes. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture, CAB International. Wallingford. pp. 158-167.

Tahir M, Wei X, Li J, Kang B, Yan Y (2023) Mixed legume–grass seeding and nitrogen fertilizer input enhance forage yield and nutritional quality by improving the soil enzyme activities in Sichuan, China. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.117615

Tarawali G, Mohamed-Saleem MA, Chionuma PC (1995) The effect of frequency of defoliation on the productivity of selected forage legumes (Stylosanthes hamata, Stylosanthes capitata and Centrosema pascuorum) in the sub-humid zone of Nigeria. Experimental Agriculture 31(1): 13-19. https://doi.org/10.1017/S0014479700024960

Teixeira EC, Abreu LF, de Souza FA, Matrangolo WJR, da-Silva KT, de-Lima LS, de-Sa HCM, Lana ÂMQ (2023) Could Cratylia argentea replace Tifton 85 hay on growing and finishing lamb diets in tropical areas? Plos One 18(12): e0295510. https://doi.org/10.1371/journal.pone.0295510

Turner LR, Donaghy DJ, Lane PA, Rawnsley RP (2006) Effect of defoliation management, based on leaf stage, on perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under dryland conditions. 1. Regrowth, tillering and water-soluble carbohydrate concentration. Grass and Forage Science 61(2): 164-174. https://doi.org/10.1111/j.1365-2494.2006.00523.x

Valles-de-la-Mora B, Castillo-Gallegos E, Alonso-Díaz MÁ, Ocaña-Zavaleta E, Jarillo-Rodríguez J (2017) Live-weight gains of Holstein × Zebu heifers grazing a Cratylia argentea/Toledo-grass (Brachiaria brizantha) association in the Mexican humid tropics. Agroforestry Systems 91(6): 1057-1068. https://doi.org/10.1007/s10457-016-9980-5

Valles-de-la-Mora B, Castillo-Gallegos E, Ocaña-Zavaleta E, Jarillo-Rodríguez J (2014) Cratylia argentea: Un arbusto forrajero potencial en sistemas silvopastoriles: Rendimiento y calidad de accesiones según las edades de rebrote y estaciones climáticas. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20(2): 277-293. https://doi.org/10.5154/r.rchscfa.2013.11.040

Verma A, Gupta VK, Jana A, Jain RK, Deb C (2023) Tropical climates and the interplay between IEQ and energy consumption in buildings: A review. Building and Environment 242: 110551. https://doi.org/10.1016/j.buildenv.2023.110551

Descargas

Publicado

2025-07-28

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Lucas-Lorenzo , D. E., Santiago-Ortega , M. A., Cadena-Villegas , S., Calzada-Marín , J. M., & Flores Santiago, E. del J. (2025). Rendimiento de Cratylia argentea (desvaux) o. Kuntze a diferentes estrategias de manejo. Ecosistemas Y Recursos Agropecuarios, 12(2). https://doi.org/10.19136/era.a12n2.4089

Artículos más leídos del mismo autor/a