Influence of potassium nanoparticles on yield and bioactive compounds in melon fruit

Autores/as

DOI:

https://doi.org/10.19136/era.a11nIV.4280

Palabras clave:

Antioxidantes, Cucumis melo L, fertilización foliar, nanotecnología

Resumen

El potasio es un elemento de calidad, debido a su papel en el transporte de azúcares, biosíntesis de metabolitos y la activación de enzimas. Este estudio tuvo como objetivo determinar la dosis óptima de nanopartículas de potasio (K NPs) en plantas de melón y evaluar su impacto en el rendimiento, la calidad nutracéutica y contenido de K en los frutos. Se realizó un experimento de campo con melón cv Cruiser, aplicando dosis foliares de K NPs (100, 200, 300, y 400 mg L-1) y un tratamiento control (agua destilada). Los resultados indicaron que la aplicación foliar de K NPs afectó significativamente la calidad nutracéutica y el contenido de K en frutos de melón, sin afectar el rendimiento del cultivo. Los frutos de melón de plantas con la dosis intermedia (200 mg L-1), presentaron los valores más altos de sólidos solubles totales y firmeza. La dosis baja (100 mg L-1), incremento la biosíntesis de flavonoides, fenoles totales y capacidad antioxidante, mientras que las dosis más altas (300 y 400 mg L-1) redujeron los compuestos bioactivos, aunque aumentaron el contenido de potasio en los frutos. La aplicación foliar de K NPs es una estrategia viable que integrada con las prácticas agronómicas del cultivo puede mejorar la calidad nutracéutica del melón sin comprometer el rendimiento del cultivo. Sin embargo, es necesario determinar las dosis, ya que la dosis baja e intermedia mejoran la calidad biofisica y nutraceutica del fruto, mientras que las dosis más altas pueden tener efectos adversos sobre los compuestos bioactivos.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Zoraida M. Galvan Cardona, Instituto Tecnológico de Torreón

    Tecnológico Nacional de México. Campus Instituto Tecnológico de Torreón. Antigua Carretera Torreón San Pedro km 7.5, CP 27170. Torreón, Coahuila, México.

  • Pablo Preciado Rangel, Instituto Tecnológico de Torreón

    Tecnológico Nacional de México. Campus Instituto Tecnológico de Torreón. Antigua Carretera Torreón San Pedro km 7.5, CP 27170. Torreón, Coahuila, México.

  • Reyna R. Guillén Enríquez, Instituto Tecnológico de Torreón

    Tecnológico Nacional de México. Campus Instituto Tecnológico de Torreón. Antigua Carretera Torreón San Pedro km 7.5, CP 27170. Torreón, Coahuila, México.

  • Bernardo Espinosa Palomeque, Universidad Tecnológica de Escuinapa

    Universidad Tecnológica de Escuinapa. Camino al Guasimal S/N, CP. 82400. Escuinapa de Hidalgo, Sinaloa, México.

  • María de los Ángeles Sariñana Navarrete, Universidad Tecnológica de Rodeo

    Universidad Tecnológica de Rodeo. Carretera Panamericana km 159.4, Col. ETA, CP. 37560. Rodeo, Durango, México.

Referencias

Abdullah SK, Alabdaly MM (2023) Influence of spraying potassium, sugar alcohol, and boron on yield and quality of melon under protected cultivation. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. 4p. 042035. https://doi.org/10.1088/1755-1315/1262/4/042035

Akhtar ME, Khan MZ, Rashid MT, Ahsan Z, Ahmad S (2010) Effect of potash application on yield and quality of tomato (Lycopersicon esculentum Mill.). Pakistan Journal of Botany 42(3): 1695-1702.

Akhtyamova Z, Martynenko E, Arkhipova T, Seldimirova O, Galin I, Belimov A, Vysotskaya L, Kudoyarova G (2023) Influence of plant growth-promoting rhizobacteria on the formation of apoplastic barriers and uptake of water and potassium by wheat plants. Microorganisms 11: 1-13. https://doi.org/10.3390/microorganisms11051227

AOAC (1990) Association of Official Analytical Chemists. Official Methods of Analysis, 15th Ed. Association of Official Analytical Chemists: Washington, DC, USA. 771p.

Asaduzzaman M, Talukder MR, Tanaka H, Ueno M, Kawaguchi M, Yano S, Asao T (2018) Production of low-potassium content melon through hydroponic nutrient management using perlite substrate. Frontiers in Plant Science 9: 1-18. https://doi.org/10.3389/fpls.2018.01382

Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Butt BZ, Naseer I (2020) Nanofertilizers. In: Javad S (eds) Nanoagronomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41275-3_8

Choi HY, Ha SK (2013) Potassium balances in maintenance hemodialysis. Electrolyte Blood Press 11(1): 9-16. https://doi.org/10.5049/ebp.2013.11.1.9

Crawford A, Harris H (2011) Balancing act: Na+ sodium K+ potassium. Nursing 41: 44-50. https://doi.org/10.1097/01.nurse.0000397838.20260.12

Demiral MA, Köseoglu AT (2005) Effect of potassium on yield, fruit quality, and chemical composition of greenhouse-grown galia melon. Journal of Plant Nutrition 28: 93-100. https://doi.org/10.1081/pln-200042179

Doaa MH, Sefan RF, El-Boray MS (2019) Effect of potassium nano fertilizer on yield and berry qualities of ‘Flame Seedless’ grapevines. Journal of Plant Production 10(11): 929-934. https://doi.org/10.21608/jpp.2019.68553

Gaaliche B, Yahmed BJ, Benmoussa H, Mimoun BM (2024) Fruit yield and quality of fig (Ficus carica L.) are affected by foliar sprays of potassium sulfate. Journal of Agricultural Science and Technology 26(3): 623-635. http://dx.doi.org/10.22034/JAST.26.3.623

García-Mendoza V, Cano RP, Reyes-Carrillo JL (2019) Harper-type melon hybrids have higher quality and longer post-harvest life than commercial hybrids. Revista Chapingo Serie Horticultura 25(3): 185-197. https://doi.org/10.5154/r.rchsh.2019.05.008

García-Nava M (2009) Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro Revista Académica 1: 1-4.

Guillén-Enríquez RR, Zuñiga-Estrada L, Ojeda-Barrios DL, Rivas-García T, Trejo-Valencia R, Preciado-Rangel P (2022) Effect of nano-biofortification with iron on yield and bioactive compounds in cucumber. Revista Mexicana de Ciencias Agrícolas 13(28): 173-184. https://doi.org/10.29312/remexca.v13i28.3272

Hartz TK, Johnstone PR, Francis DM, Miyao EM (2005) Processing tomato yield and fruit quality improved with potassium fertigation. HortScience 40(6): 1862-1867. https://doi.org/10.21273/HORTSCI.40.6.1862

Hatami M, Ghorbanpour M (2024) Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. Plant Physiology and Biochemistry 108847. https://doi.org/10.1016/j.plaphy.2024.108847

Ho LC (1988) Metabolism and compartmentation of imported sugars in sink organs about sink strength. Annual Review of Plant Biology 39: 355-378. https://doi.org/10.1146/annurev.arplant.39.1.355

Huchzermeyer B, Menghani E, Khardia P, Shilu A (2022) Metabolic pathway of natural antioxidants, antioxidant enzymes, and ROS providence. Antioxidants 11(4): 761. https://doi.org/10.3390/antiox11040761

Javaira S, Khan MQ, Bakhsh I (2012) Effect of potassium on chemical and sensory attributes of tomato fruit. Journal of Animal and Plant Sciences 22(4): 1081-1085.

Jifon, JL, Lester GE (2011) Effect of foliar potassium fertilization and source on cantaloupe yield and quality. Better Crops 95: 13-15.

Lester GE, Mon JL, Makus DJ (2006) Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. Hortscience 41(3): 741-744. https://doi.org/10.21273/HORTSCI.41.3.741

Lester GE, Jifon JL, Makus DJ (2010) Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L.) case study. Plant and Soil 335: 117-131. https://doi.org/10.1007/s11104-009-0227-3

Lo'ay AA, EL-Ezz SFA, Awadeen AA (2021) Effect of different foliar potassium fertilization forms on vegetative growth, yield, and fruit quality of kaki trees grown in sandy soil. Scientia Horticulturae 288: 110420. https://doi.org/10.1016/j.scienta.2021.110420

Mahmoud AWM, Samy MM, Sany H, Eid RR, Rashad HM, Abdeldaym EA (2022) Nanopotassium, nanosilicon, and biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 14(2): 723. https://doi.org/10.3390/su14020723

Marquez-Prieto AK, Palacio-Marquez A, Sanchez E, Macias-Lopez BC, Perez-Álvarez S, Villalobos-Cano O, Preciado-Rangel P (2022) Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans. Notulae Botanicae Norti Agrobotanici Cluj-Napoca 50(1): 1-12. https://doi.org/10.15835/nbha50112569

Marschner P (2012). Marschner’s mineral nutrition of higher plants. Academic Press. 3rd Ed. London. UK. 651p.

Molina E, Salas R, Martínez I, Cabalceta G, Cabalceta E (1992) Fertilización potásica del cultivo del melón (Cucumis melo L cv Honey Dew) en Guanacaste, Agronomía Costarricense 16(1): 107-113.

Oosterhuis DM, Loka DA, Kawakami EM, Pettigrew WT (2014) The physiology of potassium in crop production. Advances in agronomy 126: 203-233. https://doi.org/10.1016/b978-0-12-800132-5.00003-1

Qibin R, Shan C, Zhang P, Zhao W, Zhu G, Sun Y, Quanlong ER, Jiang Y, Shakoor N, Rui Y (2024) The combination of nanotechnology and potassium: applications in agriculture. Environmental Science and Pollution Research 31: 1890-1906. https://doi.org/10.1007/s11356-023-31207-y

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021) Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas 12(5): 791-803. https://doi.org/10.29312/remexca.v12i5.2987

Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD (2017) Potassium in the grape (Vitis vinifera L.) Berry: Transport and function. Frontiers in Plant Science 8: 1-19 https://doi.org/10.3389/fpls.2017.01629

Saddhe AA, Manuka R, Penna S (2021) Plant sugars: homeostasis and transport under abiotic stress in plants. Physiol. Plant 171(4): 739-755. https://doi.org/10.1111/ppl.13283

Salama DM, Khater MA, El-Aziz AME (2024) The influence of potassium nanoparticles as a foliar fertilizer on onion growth, production, chemical content, and DNA fingerprint. Heliyon 10(1): 1-15. https://doi.org/10.1016/j.heliyon.2024.e31635

Shen C, Wang J, Jin X, Liu N, Fan X, Dong C, Shen Q, Xu Y (2017) Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears. Plant Growth Regulation 83: 287-300. https://doi.org/10.1007/s10725-017-0294-z

Sheoran P, Goel S, Boora R, Kumari S, Yashveer S, Grewal S (2021) Biogenic synthesis of potassium nanoparticles and their evaluation as a growth promoter in wheat. Plant Gene 27: 100310. https://doi.org/10.1016/j.plgene.2021.100310

SIAP (2023) Cierre de la producción agropecuaria. Sistema de Información Agroalimentaria y Pesquera. https://www.gob.mx/siap/prensa/cierre-de-la-produccion-agropecuaia?idiom=es. Data consulted: september 25, 2024.

Singh L, Sadawarti RK, Singh SK, Rajput VD, Minkina T, Sushkova S (2024) Efficacy of nano-zinc oxide and iron oxide formulations on shelf life of strawberry. Eurasian Journal of Soil Science 13(3): 254-262.

Uthman A, Garba Y (2023) Citrus mineral nutrition and health benefits: a review. Citrus Research-Horticultural and Human Health Aspects. https://doi.org/10.5772/intechopen.107495

Weil RR, Brady NC (2002) The nature and properties of soils. Fifthteenth Edition. Pearson. Columbus. 1071p.

Wu K, Hu C, Wang J, Guo J, Sun X, Tan Q, Zhao X, Wu S (2023) Comparative effects of different potassium sources on soluble sugars and organic acids in tomato. Scientia Horticulturae 308: 111601. https://doi.org/10.1016/j.scienta.2022.111601

Xie K, Cakmak I, Wang S, Zhang F, Guo S (2021) Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal 9(2): 249-256. https://doi.org/10.1016/j.cj.2020.10.005

Zhang W, Zhang X, Wang Y, Zhang N, Guo Y, Ren X, Zhao Z (2018) Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biology Open 7(12): bio024745. https://doi.org/10.1242/bio.024745

Zörb C, Senbayram M, Peiter E (2014) Potassium in Agriculture – Status and Perspectives. Journal of Plant Physiology 171(9): 656-669. https://doi.org/10.1016/j.jplph.2013.08.008

Descargas

Publicado

2024-12-13

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Galvan Cardona, Z. M. ., Preciado Rangel, P., Guillén Enríquez, R. R., Espinosa Palomeque, B., Sariñana Navarrete, M. de los Ángeles, & Buendía García, A. (2024). Influence of potassium nanoparticles on yield and bioactive compounds in melon fruit. Ecosistemas Y Recursos Agropecuarios, 11(IV). https://doi.org/10.19136/era.a11nIV.4280

Artículos similares

51-60 de 125

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a