FEMINIZATION OF NILE TILAPIA Oreochromis niloticus (L.) BY DIETHYLSTILBESTROL GROWTH AND GONADOSOMATIC INDEX

Autores/as

  • José Antonio Marín Ramírez SAGARPA. Antes: Universidad del Papaloapan
  • Juan Pablo Alcántar Vázquez Universidad del Papaloapan
  • Carolina Antonio Estrada Universidad del Papaloapan
  • Raúl Moreno de la Torre Universidad del Papaloapan
  • Daniel Calzada Ruíz Universidad del Papaloapan

DOI:

https://doi.org/10.19136/era.a3n7.789

Palabras clave:

O. niloticus, sex-reversal, anabolic effect, survival, gonadal development.

Resumen

Sex-reversal by exogenous hormones is the most common technique used to generate monosex popu- lations of Nile tilapia (Oreochromis niloticus). However, this technique has provoked a negative perception in recent years. Because of this, alternative techniques have been developed, including the production of YY males. Although the final product (for sale) is not administered hormones, the first part of this technique still requires the feminization of XY fry by use of estrogens, including some of a synthetic nature, such as diethylstilbestrol (DES), an estrogen that has shown particularly excellent results in related species. The aim of this study was to evaluate the effect of increasing concentrations of DES (100, 200, 300, and 400 mg kg−1 during the fry stage on the sex proportion, growth and gonadosomatic index (GSI) of Nile tilapia. The 400 mg kg−1 concentration was the one that produced the highest proportion of females (91 %). However, increasing the concentration of DES provided through diet does not guarantee a 100 % feminization rate. Additionally, the growth, survival and GSI, showed a significant decrease (p < 0.05) in all groups fed with DES compared to the control group. It is possible that the anabolic effect of DES observed in other species is not present in Nile tilapia.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • José Antonio Marín Ramírez, SAGARPA. Antes: Universidad del Papaloapan
    Lic. en Zootecnia de la Universidad del Papaloapan, titulado a través de tesis realizada con feminización de tilapia del Nilo. Trabaja desde hace dos años bajo la dirección del Dr. Juan Pablo Alcántar Vázquez. Actualmente bajo contrato como PSP de Sagarpa para proyecto con productores de tilapia de la Presa Cerro de Oro. Lo anterior, en coordinación con el Dr. Alcántar y los M.C. Antonio y Moreno.
  • Juan Pablo Alcántar Vázquez, Universidad del Papaloapan
    Profesor Investigador de la carrera de Ingeniería en Acuicultura. Especialidad en reproducción y Mejoramiento genético de peces marinos y dulceacuícolas.
  • Carolina Antonio Estrada, Universidad del Papaloapan
    Profesor-Investigador del área de Ciencias Agropecuarias, carrera de Ingeniería en Acuicultura. Experiencia en alimentación de peces y áreas relacionadas. La M.C. Antonio ha trabajado desde hace 3 años en colaboración con el Dr. Alcántar en la generación de machos YY y hembras XY.
  • Raúl Moreno de la Torre, Universidad del Papaloapan
    Profesor-Investigador del área de Ciencias Agropecuarias, carrera de Ingeniería en Acuicultura. Experiencia en nutrición de peces, crecimiento y análisis de progenies. El M.C. Moreno ha trabajado desde hace 3 años en colaboración con el Dr. Alcántar en la generación de machos YY y hembras XY.
  • Daniel Calzada Ruíz, Universidad del Papaloapan
    Ing. En acuic. y resposanble del laboratorio de Acuicultura de la Universidad del Papaloapan. Experiencia mantenimiento, alimentación, análisis de gonadas y selección de potenciales machos YY y hembras XY dentro del proyecto para la producción de machos YY.

Referencias

Alcántar-Vázquez JP, Moreno de la Torre R, Calzada-Ruíz D, Antonio-Estrada C (2014) Production of YY-male of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) from atypical fish. Latin American Journal of Aquatic Research 42(3): 644-648

Baroiller JF, D`cotta H, Bezault E, Wessels S, Hoerstgen-schwark G (2009) Tilapia sex determination: where temperature and genetics meet. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153(1): 30-8.

Basavaraja N, Nandeesha MC, Varghese TJ, Keshavanath P, Srikanth GK (1990) Induction of sex reversal in Oreochromis mossambicus by diethylstilbestrol. Journal of Applied Ichthyology 6: 46-50.

Contreras-sánchez wm, márquez-couturier g, gonzález-márquez tr, dorantes-lopez la, schreck cb (1997) Masculinization of nile tilapia fry by immersion in trenbolone acetate: reuse of hormone solution and effects of temperature. In: McElwee K, Lewis, K, Nidiffer M, Buitrago P (Eds), Nineteenth Annual Technical Report. Pond Dynamics/Aquaculture CRSP, Oregon State University, Corvallis, Oregon, pp. 35-38.

FAO (2005) Cultured aquatic species information program. Oreochromis niloticus. Text by Rakocy, J.E. In: FAO Fisheries and Aquaculture Department. Rome. [http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en]. Reviewed: 18 September 2014.

Guerrero R (1975) Use of androgens for the production of all-male tilapia aurea (Steindachner). Transactions of the American Fisheries Society 2: 342-348.

Hamdoon NT, Ibrahim F, Kelany AM, Hanan FE, Zayed AE (2013) Hormonal sex reversal in Oreochromis niloticus by oral administration of diethylstilbestrol. Life Science Journal 10(2): 123-128.

Haux C, Norberg B (1985) The influence of estradiol-17β on the liver content of protein, lipids, glycogen and nucleic acids in juvenile rainbow trout, salmo gairdneri. Comparative Biochemistry and Physiology 72: 165-172.

Herman RL, Kincaid HL (1988) Pathological effects of orally administered estradiol to rainbow trout. Aquaculture 72: 165-172.

Hopkins KD, Shelton WL, Engle CR (1979) Estrogen sex-reversal of Tilapia aurea. Aquaculture 18: 263-268.

Jiménez BML, Arredondo FJL (2000) Manual técnico para la reversión sexual de tilapia. UAM-Iztapalapa, México, D.F. 36 p.

Król J, Poblocki W, Bockenheimer T, Hliwa P (2014) effect of diethylstilbestrol (DES) and 17β-estradiol (E2) on growth, survival and histological structure of the internal organs in juvenile European catfish silurus glanis (l.). Aquaculture International 22: 53-62.

Leet KJ, Gall EH, Sepúlveda SM (2011) A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. Journal of Applied Toxicology 31: 379-398.

Linderoth M, Hansson T, Liewenborg B, Sundberg H, Noaksson E, Hanson M, Zebühr Y, Balk L (2006) Basic physiological biomarkers in adult female perch (Perca fluviatilis) in a chronically polluted gradient in the Stockholm recipient (Sweden). Journal of Marine Pollution Bulletin 53(8-9): 437-450.

Louiz I, Ben-Attiab M, Ben-Hassinea O (2009) Gonadosomatic index and gonad histopathology of Gobius niger (Gobiidea, Teleost) from Bizerta lagoon (Tunisia): Evidence of reproduction disturbance. Fisheries Research 100: 266-273.

Mair GC, Santiago LP (1994) Feminization of Nile tilapia Oreochromis niloticus L. by oral application of Diethylstilbestrol (DES). In: Chou LM, Munro AD, Lam TJ, Chen TW, Cheong LKK, Ding JK, Hooi KK, Khoo HW, Phang VPE, Shim KF, Tan CH (Eds.). The Third Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines. pp. 94-97.

Mair GC, Abucay JS, Skibinski DF, Beardmore JA (1997) Genetic manipulation of sex ratio for the large scale production of all-male tilapia, Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences 54: 396-404.

Marchand MJ, Pieterse GM, Barnhoorn IJ (2008) Preliminary results on sperm motility and testicular histology of two feral fish species, Oreochromis mossambicus and Clarias gariepinus, from a currently DDT-sprayed area, South Africa. Journal of Applied Ichthyology 24(4): 423-429.

Milnes MR, Bermudez DS, Bryan TA, Edwards TM, Gunderson MP, Larkin IV, Moore BC, Guillette LJ Jr (2006) Contaminant-induced feminization and demasculinization of nonmammalian vertebrate males in aquatic environments. Environmental Research 100: 3-17.

Müller BA, Hörstgen SG (2007) A YY-male Oreochromis niloticus strain developed from an exceptional mitotic gynogenetic male and growth performance testing of genetically all-male progenies. Aquaculture Research 38: 773-775.

Nonglak P, Boonanuntanasarn S, Jangprai A, Yoshizaki G, Na-Nakorn U (2012) Pubertal effects of 17α-methyltestosterone on GH-IGF-related genes of the hypothalamic-pituitary-liver-gonadal axis and other biological parameters in male, female and sex-reversed Nile tilapia. General and Comparative Endocrinology 177: 278-292.

Paul-Prasanth B, Shibata Y, Horiguchi R, Nagahama Y (2011) Exposure to diethylstilbestrol during embryonic and larval stages of medaka fish (Oryzias latipes) leads to sex reversal in genetic males and reduced gonad weight in genetic females. Endocrinology 152(2): 707-717

Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197: 229-281.

Potts AC, Phelps RP (1995) Use de diethylstilbestrol and ethynylestradiol to feminize nile tilapia Oreochromis niloticus (L.) in an outdoor environment. Journal of applied ichthyology 11(1-2): 111-117.

Ridha MT, Lone KP (1995) Preliminary studies on feminization and growth of Oreochromis spilurus (Gunther) by oral administration of 17α-ethynyloestradiol in sea water. Aquaculture Research 26: 475-482.

Rosenstein S, Hulata G (1994). Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquaculture and Fishery Management 25: 329-339.

Shved N, Berishvili G, Häusermann E, D'Cotta H, Baroiller JF, Eppler E (2009) Challenge with 17α-ethinylestradiol (EE2) during early development persistently impairs growth, differentiation, and local expression of IGF-I and IGF-II in immune organs of tilapia. Fish and Shellfish Immunology 26(3): 524-530.

Song TW, Wang JZ, Liu CH (2014) Effects of individual and binary mixtures of estrogens on male goldfish (Carassius auratus). Fish Physiology and Biochemistry 40(6): 1927-1935.

Sturm GM de L (1978) Aspects of the biology of Scomberomorus maculatus (Mitchill) in Trinidad. Journal of Fish Biology 13(2): 155-172.

Varadaraj K (1989) Feminization of Oreochromis mossambicus by administration of diethylstilbestrol. Aquaculture 80: 337-341.

Vera-Cruz ME, Mair CG, Marino PR (1996) Feminization of genotipically YY Nile tilapia Oreochromis niloticus L. Asian Fisheries Science 9: 161-167.

Wang HL, Tsai LC (2000) Effects of temperature on the deformity and sex differentiation of tilapia, Oreochromis mossambicus. Journal of Experimental Zoology 286: 534-537.

Washburn BS, Krantz JS, Avery EH, Freedland RA (1993) Effects of estrogen on gluconeogenesis and related parameters in male rainbow trout. American Journal of Physiology 264: 720-725.

Wessels S, Hörstgen-Schwark G (2007) Selection experiments to increase the proportion of males in Nile tilapia (Oreochromis niloticus) by means of temperature treatment. Aquaculture 272: 80-87.

Zhong X, Xu Y, Liang Y, Liao T, Wang J (2005) The Chinese rare minnow (Gobiocypris rarus) as an in vivo model for endocrine disruption in freshwater teleosts: a full life-cycle test with diethylstilbestrol. Aquatic Toxicology 71: 85-95.

Publicado

2015-11-19

Número

Sección

ARTÍCULOS CIENTÍFICOS

Cómo citar

Marín Ramírez, J. A., Alcántar Vázquez, J. P., Antonio Estrada, C., Moreno de la Torre, R., & Calzada Ruíz, D. (2015). FEMINIZATION OF NILE TILAPIA Oreochromis niloticus (L.) BY DIETHYLSTILBESTROL GROWTH AND GONADOSOMATIC INDEX. Ecosistemas Y Recursos Agropecuarios, 3(7), 51-61. https://doi.org/10.19136/era.a3n7.789

Artículos similares

11-20 de 345

También puede Iniciar una búsqueda de similitud avanzada para este artículo.