Genetic diversity and population structure in casanareño colombian cattle through microsatellite molecular markers

Authors

  • Ricardo Jose Ocampo Corporación Colombiana de Investigación Agropecuaria AGROSAVIA
  • Juan Felipe Martinez Rocha Corporación Colombiana de Investigación Agropecuaria AGROSAVIA
  • Rodrigo Alfredo Martinez Sarmiento Corporación Colombiana de Investigación Agropecuaria AGROSAVIA

DOI:

https://doi.org/10.19136/era.a7n3.2396

Abstract

Knowledge of population structure, genetic variability and introgression of foreign breeds is crucial to focus efforts for the conservation of indigenous genetic resources. This study aimed to analyze the genetic diversity of six Casanareño populations cattle using 11 microsatellite markers. Blood samples were obtained from 212 unrelated individuals which were amplified by PCR and analyzed. We observed a total of 156 alleles with a polymorphic information content average of 0.742, which shows that the panel used was very informative. The observed heterozygosity estimates varied from 0.788 in MF to 0.690 in CY. There was a deficit of heterozygous individuals in the general population (FIS = 0.059) caused by high consanguinity and the proportion of the genetic variance due to the differences between the different subpopulations was 4%. Both the Bayesian grouping analysis and the phylogenetic tree showed a reliable clustering pattern, which revealed two main clusters in Casanareño cattle which can be the result of geographical isolation, reproductive practices and absorption to zebu breeds. Four out of six subpopulations presented effective population sizes below the critical level defined by the FAO of 50 individuals, so it is recommended to form a conservation nucleus of the Casanareño breed with a well-defined mating scheme to minimize consanguinity and the intensive use of few males to maintain genetic diversity and prevent the breed from becoming extinct.

Downloads

Download data is not yet available.

References

Acosta A, Uffo O, Sanz A, Ronda R, Osta R, Rodellar C, et al. (2013) Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci. Journal of Animal Breeding Genetics 130: 79-86.

Álvarez I, Capote J, Traoré A, Fonseca N, Perez K, Cuervo M, et al. (2012) Genetic relationships of the Cuban hair sheep inferred from microsatellite polymorphism. Small Ruminant Research 104: 89-93.

Bernardes DA, Grossi RP, Savegnago ME, Buzanskas SB, Ramos EP, Romanzini DG, et al. (2016) Population structure of Tabapuã beef cattle using pedigree analysis. Livestock Science 187: 96-101.

Censo bovino nacional. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018. Fecha de consulta 13 de Julio de 2019.

Ciani E, Ciampolini R, D’Andrea MS, Castellana E, Cecchi F, et al. (2013) Analysis of genetic variability within and among Italian sheep breeds reveals population stratification and suggests the presence of a phylogeographic gradient. Small Ruminant Research 112: 21-27.

Dixit SP, Verma NK, Aggarwal RAK, et al. 2012. Genetic diversity and relationship among Indian goat breeds based on microsatellite markers. Small Ruminant Research, 105: 38-45.

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.

FAO (2011) Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. Rome, Italy. 100p.

FAO (2013) In vivo conservation of animal genetic resources. FAO Animal Production and Health Guidelines, No. 14, Rome, Italy. 270 p.

Gororo E, Makuza SM, Chatiza FP, Chidzwondo F, Sanyika TW (2018) Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. South African Journal of Animal Science 48 (1): 128-141.

Goudet J (2002) FSTAT (version 2.9.3.2): a program to estimate and test gene diversities and fixation indices. F-statistics. Journal of Heredity 86: 485-486.

Kayang BB, Inoue-Murayama M, Hoshi T (2002) Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genetic Selection Evolution 2002; 34: 233-253.

Kim KS, Yeo JS, Choi CB (2002) Genetic diversity of north-east Asian cattle based on microsatellite data. Animal Genetics 33 (3): 201-204.

Martínez R, Vásquez RE, Gallego JL (2012) Eficiencia productiva de la raza Bon en el trópico colombiano. Corpoica, Bogotá, Colombia. 215p.

Nei, M (1987) Molecular Evolutionary Genetics. New York. Columbia University Press. 512 p.

Ocampo R, Martínez R, Cardona H (2016) Genetic diversity of Colombian sheep by microsatellite markers. Chilean Journal of Agricultural Research 76(1):40-47.

Ocampo RJ, Martínez RA, Rocha JF, Cardona H (2017) Genetic characterization of Colombian indigenous sheep. Revista Colombiana de Ciencias Pecuarias 30:116-125.

Park SDE (2008) Excel Microsatellite Toolkit. Computer program and documentation distributed by the author. http://animalgenomics.ucd.ie/sdepark/ms-toolkit. Fecha de consulta 01 de Julio de 2019.

Pham LD, Do DN, Binh NT, Nam LQ, Ba NV, Thuy TTT, et al. (2013) Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites. Livestock Science 155: 17-22.

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103-106.

Sanarana Y, Visser C, Bosman L, Nephawe K, Maiwashe A, Van Marle-Köster E (2016) Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers. Tropical Animal Health Production 48: 379-85.

Santana I, Abeledo CM, Sánchez N (2017) Estimación de los niveles de endogamia en el centro genético núcleo del cerdo criollo cubano. AICA 9: 129-134.

Sastre HJ, Rodero E, Rodero A, Azor PJ, Sepúlveda NG, et al. (2005) Caracterización faneróptica, morfológica, morfométrica y genética de la raza colombiana criolla Casanare. Memorias: III Seminario Regional Agrociencia y Tecnología Siglo XXI. Medio Magnético. CORPOICA, ICA. CIAT y Secretaría de Agricultura del Meta. Villavicencio, Meta.

Souza CA, Paiva SR, McManus CM, et al. 2012. Genetic diversity and assessment of 23 microsatellite markers for parentage testing of Santa Ines hair sheep in Brazil. Genet Mol Res, 8:1217-29.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Tolone M, Mastrangelo S, Rosa AJM (2012) Genetic diversity and population structure of Sicilian sheep breeds using microsatellite markers. Small Ruminant Research 102: 18-25.

Villalobos Cortés AI, Martínez AM, Escobar C, Vega-Pla JL, Delgado JV (2010) Study of genetic diversity of the Guaymi and Guabala bovine populations by means of microsatellites. Livestock Science 131: 45-51.

Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

Zuccaro A, Bordonaro S, Criscione A, Guastella M, Perrotta G, et al. (2008) Genetic diversity and admixture analysis of Sanfratellano and three other Italian horse breeds assessed by microsatellite markers. Animal 2: 991–998.

Downloads

Published

2020-12-08

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Ocampo, R. J., Martinez Rocha, J. F., & Martinez Sarmiento, R. A. (2020). Genetic diversity and population structure in casanareño colombian cattle through microsatellite molecular markers. Ecosistemas Y Recursos Agropecuarios, 7(3). https://doi.org/10.19136/era.a7n3.2396