Respuesta de Canthon indigaceus chevrolati Harold a las heces de bovinos tratados con lactonas macrocíclicas
Response of Canthon indigaceus chevrolati Harold to the feces of cattle treated with macrocyclic lactones
DOI:
https://doi.org/10.19136/era.a7n3.2609Keywords:
Escarabajos estercoleros, antiparasitarios, lactonas macrocíclicas, ganaderíaAbstract
Macrocyclic lactones (ML) are antiparasitic drugs routinely used in tropical cattle farming. After its administration the drug is eliminated in the animal’s feces, causing a toxic effect on the beneficial fauna that provides ecosystem services, including the recycling of excrement to facilitate the return of nutrients to the grassland soil. Bioassays were carried out to determine the lethal and sublethal effect of feces from cattle treated with ivermectin (IVM-1% on a dose of 0.2 mg kg−1 l.w. and IVM-3.15% on a dose of 0.63 mg kg−1 l.w.) and moxidectin (MOX-1% on a dose of 0.2 mg kg−1 l.w. and MOX-10% on a dose of 1.0 mg kg−1 l.w.) on the dung beetle Canthon indigaceus chevrolati, an inhabitant species of tropical cattle systems. The feces of the treated animals were recovered at -1, 5, and 14 days post-treatment to be exposed to couples of C. i. chevrolati in the laboratory and determine its effect on the variables: number of nest balls built, number of imagoes that emerged, number of days to the emergence of imagoes, total grams of excrement consumed, and the proportion of emerged beetles in each of the different treatments evaluated. No lethal or sublethal effects were found in the different bioessays carried out. The results of this study suggest for the first time that this beetle is showing some type of tolerance (natural or induced) to IVM and MOX.
Downloads
References
Basto-Estrella G, Rodríguez-Vivas RI, Delfín-González H, Reyes-Novelo E (2014) Dung beetle (Coleoptera: Scarabaeinae) diversity and seasonality in response to use of macrocyclic lactones at cattle ranches in the Mexican neotropics. Insect Conservation and Diversity 7: 73-81.
Basto-Estrella G, Rodríguez-Vivas RI, Delfín-González H, Navarro-Alberto JA, Reyes-Novelo EA (2016) Dung removal by dung beetles (Coleoptera: Scarabaeidae) and macrocyclic lactone use on cattle ranches of Yucatán, Mexico. International Journal of Tropical Biology and Conservation 64: 953-959.
Benavides E, Romero A (2000) Preliminary results of a larval resistance test to ivermectins using Boophilus microplus reference strains. Annals of the New York Academy of Sciences 916: 610-612.
Burkhart CN (2000) Ivermectin: an assessment of its pharmacology, microbiology, and safety. Veterinary and Human Toxicology 42: 30-35.
Byford RL, Craig ME, DeRouen SM, Kimball MD, Morrison DG, Waytt WE et al. (1999) Influence of permethrin, diazinon and ivermectin treatments on insecticide resistance in the horn fly (Diptera: Muscidae). International Journal of Parasitology 29: 125-135.
Conder GA, Thompson DP, Johnson SS (1993) Demonstration of co-resistance of Haemonchus contortus to ivermectin and moxidectin. Veterinary Record 132: 651-652.
Dadour I, Cook D, Neesam C (1999) Dispersal of dung containing ivermectin in the field by Onthophagus taurus (Coleoptera: Scarabaeidae). Bulletin of Entomological Research 89: 119-123.
Dadour IR, Cook DF, Hennessy D (2000) Reproduction and survival of the dung beetle Onthophagus binodis (Coleoptera: Scarabaeidae) exposed to abamectin and doramectin residues in cattle dung. Environmental Entomology 29: 1116-1122.
Didier A, Loor F (1996) The abamectin derivative ivermectin is a potent P-glycoprotein inhibitor. Anti-Cancer Drugs 7: 745-51.
Doherty WM, Stewart NP, Cobb RM, Keiran PJ (1994) In-vitro comparison of the larvicidal activity of moxidectin and abamectin against Onthophagus gazella (F.) (Coleoptera: Scarabaeidae) and Haematobia irritans exigua De Meijere (Diptera: Muscidae). Journal of Austral Entomology 33: 71-74.
Egerton JR, Suhayda D, Eary CH (1988) Laboratory selection of Haemonchus contortus for resistance to ivermectin. The Journal of Parasitology 74: 614-617.
Errouissi F, Alvinerie M, Galtier P, Kerboeuf D, Lumaret JP (2001) The negative effects of the residues of ivermectin in cattle dung using a sustained release bolus on Aphodius constans (Duft.) (Coleoptera: Aphodiidae). Veterinary Research 32: 421-427.
Errouissi F, Lumaret JP (2010) Field effects of faecal residues from ivermectin slow-release boluses on the attractiveness of cattle dung to dung beetles. Medical and Veterinary Entomology 24: 433-440.
Fiel CA, Saumell CA, Steffan PE, Rodriguez EM (2001) Resistance of Cooperia to ivermectin treatment in grazing cattle of the humid Pampa, Argentina. Veterinary Parasitology 97: 231-219.
Fincher GT (1992) Injectable ivermectin for cattle: effects on some dung-inhabiting insects. Environmental Entomology 21: 871-876.
Fincher GT, Wang GT (1992) Injectable moxidectin for cattle: effects on two species of dung burying beetles. Southwestern Entomology 17: 303-306.
Fincher GT (1996) Ivermectin pour-on for cattle: effects on some dung-inhabiting insects. Southwestern Entomology 21: 445-450.
Gottesman MN, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Review of Biochemistry 62: 385-427.
Iwasa M, Maruo T, Ueda M, Yamashita N (2007) Adverse effects of ivermectin on the dung beetles, Caccobius jessoensis Harold, and rare species, Copris ochus Motschulsky and Copris acutidens Motschulsky (Coleoptera: Scarabaeidae), in Japan. Bulletin of Entomological Research 97: 619-625.
Iwasa M, Suzuki N, Maruyama M (2008) Effects of moxidectin on coprophagous insects in cattle dung pats in Japan. Applied Entomology and Zoology 43: 271-280.
Jackson F (1993) Anthelmintic resistance - the state of play. British Veterinary Journal 149: 123-138.
Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, et al. (2000) Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitic nodulisporic acid and ivermectin, Procedures of the National Academy of Sciences 97: 13949-13954.
Krüger K, Scholtz CH (1997) Lethal and sublethal effects of ivermectin on the dung-breeding beetles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agriculture, Ecosystems and Environment 61: 123-131.
Lee CM, Wall R (2006) Cow-dung colonization and decomposition following insect exclusion. Bulletin of Entomological Research 96: 315-322.
Lumaret JP, Galante E, Lumbreras C, Mena J, Bertrand M, Bernal JL, et al. (1993) Field effects of ivermectin residues on dung beetles. Journal of Applied Ecology 30: 428-436.
Madsen M, Nielsen BO, Holter P, Pedersen OC, Jespersen JB, Jensen KMV, Nansen P, Grønvold J (1990) Treating cattle with ivermectin: effects on the fauna and decomposition of dung pats. Journal of Applied Ecology 27: 1-15.
Martínez I, Cruz M (1990) Cópula, función ovárica y nidificación en dos especies del género Canthon Hoffmannsegg (Coleoptera: Scarabaeidae). Elytron 4: 161-169.
Martínez I, Montes de Oca E (1994). Observaciones sobre algunos factores microambientales y el ciclo biológico de dos especies de escarabajos rodadores (Coleoptera, Scarabaeidae, Canthon). Folia Entomológica Mexicana 91: 47-59.
Merck and Company (1996) Ivomec eprinex (eprinomectin) Pour-On for beef and dairy cattle: environmental assessment. Report for NADA. Rahway, NJ, USA.
Montes de Oca E, Martínez I, Cruz M, Favila M (1991). Observaciones de campo sobre el comportamiento y madurez gonádica en Canthon indigaceus chevrolati Harold (Coleoptera: Scarabaeidae). Folia Entomológica Mexicana 83: 69-86.
Morón MA (2003) Atlas de los escarabajos de México. Coleoptera: Lamellicornia. Vol. II Familias Scarabaeidae, Trogidae, Passalidae y Lucanidae. Argania Editio. Barcelona, España. 300p.
Murray BE (1998) Diversity among multidrug resistant enterococci. Emerging Infectious Diseases 4: 37-47.
Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation 141: 1461-1474.
Pérez-Cogollo LC, Rodríguez-Vivas RI, Reyes-Novelo E, Delfín-González H, Muñoz-Rodríguez D (2017) Survival and Reproduction of Onthophagus landolti (Coleoptera: Scarabaeidae) exposed to ivermectin residues in cattle dung. Bulletin of Entomological Research 107: 118-125.
Pérez-Cogollo LC, Rodríguez-Vivas RI, Basto-Estrella GS, Reyes-Novelo E, Martínez-Morales I, Ojeda-Chi MM et al. (2018) Toxicidad y efectos adversos de las lactonas macrocíclicas sobre los escarabajos estercoleros: una revisión. Revista Mexicana de Biodiversidad 89: 1293-1314.
Pouliot JF, L’heureux F, Liu Z, Prichard RK, Georges E (1997) Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochemical Pharmacology 53: 17-25.
Prichard R (2001) Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17: 445-53.
Prichard R, Ménez C, Lespine A (2012) Moxidectin and the avermectins: Consanguinity but not identity. International Journal for Parasitology: Drugs and Drug Resistance 2: 134-153.
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ridsdill-Smith TJ (1988) Survival and reproduction of Musca vetustissima Walker (Diptera: Muscidae) and a scarabaeine dung beetle in dung of cattle treated with avermectin B1. Journal of Australian Entomological Society 27: 175-178.
Rodríguez-Vivas RI, Basto-Estrella GS, Reyes-Novelo E, Arcila-Fuentes W, Ojeda-Chi M, Trinidad-Martínez I, Martínez-M I (2019a) Sub-lethal effects of moxidectin on the Neotropical dung beetle Onthophagus landolti Harold (Coleoptera: Scarabaeinae). Journal of Asia-Pacific Entomology 22: 239-242.
Rodríguez-Vivas RI, Basto-Estrella GS, Reyes-Novelo E et al. (2019b) Onthophagus landolti and Canthon indigaceus chevrolati (Coleoptera: Scarabaeinae) are attracted to the feces of ivermectin-treated cattle in the Mexican tropics. Revista de Biología Tropical 67: 254-265.
Roncalli RA (1989) Environmental aspects of use of ivermectin and abamectin in livestock: effects on cattle dung fauna. In: Campbell WC (ed) Ivermectin and Abamectin. Springer-Verlag, New York. pp: 173-181.
Shoop WL (1992) Resistance to avermectins and milbemycins. Veterinary Record 130: 563.
Shoop WL (1993) Ivermectin resistance. Parasitology Today 9: 154-159.
Sommer C, Grønvold J, Holter P, Nansen P (1993) Effects of ivermectin on two afrotropical dung beetles, Onthophagus gazella and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Veterinary Parasitology 48: 171–179.
Sommer C. Nielsen BO (1992) Larvae of the dung beetle Onthophagus gazella F. (Col. Scarabaeidae) exposed to lethal and sublethal ivermectin concentrations. Journal of Applied Entomology 114: 502-509.
Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan C (2006) Livestock´s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations. Rome, 414 p.
Strong L, Wall R (1994) Effects of ivermectin and moxidectin on the insects of cattle. Bulletin of Entomological Research 84: 403-409.
Wall R, Strong L (1987) Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature 327: 418-421.
Wardhaugh KG, Rodriguez-Menendez H (1988) The effects of the antiparasitic drug ivermectin, on the development and survival of the dung-breeding fly, Orthellia cornicina (F.) and the scarabaeine dung beetles, Copris hispanus L., Bubas bubalus (Oliver) and Onitis belial F. Journal of Applied Entomoogy 106: 381-389.
Wardhaugh KG, Longstaff BC, Morton R (2001) A comparison of the development and survival of the dung beetle, Onthophagus taurus (Schreb.) when fed on the faeces of cattle treated with pour-on formulations of eprinomectin or moxidectin. Veterinary Parasitology 99: 155-168.
Xu M, Molento M, Blackhall W, Ribeiro P, Beech R, Prichard R (1998) Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Molecular and Biochemical Parasitology 91: 327-335.
Downloads
Published
Issue
Section
License
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).