Trends of climate change at the mid-low Nazas-Aguanaval inland basin based on a geographical approach

Authors

  • Omag Cano Villegas Universidad Juárez del Estado de Durango
  • Gisela Muro-Pérez Facultad de Ciencias Biológicas- UJED.
  • Enrique Jurado Facultad de Ciencias Biológicas- UJED.
  • Joel Flores Instituto Potosino de Investigación Científica y Tecnológica, A. C.
  • José Gamaliel Castañeda-Gaytan Facultad de Ciencias Biológicas- UJED.
  • Oscar Aguirre Facultad de Ciencias Forestales- UANL.
  • Jaime Sánchez Facultad de Ciencias Biológicas- UJED.

DOI:

https://doi.org/10.19136/era.a8n3.2704

Keywords:

Meteorological trends, Aridlands, Regionalization, Climate change, Geography.

Abstract

An integrative geographical climatology is presented to objectively identify regional patterns of climate variability within the mid-low Nazas-Aguanaval basin within the States of Durango and Coahuila in Central Northern Mexico, using decadal mean values for maximum and minimum temperature, as well as monthly precipitation during the seven periods from 1951-2020. The historical data was acquired from 26 field meteorological stations and 44 grid points from the SWAT model. Furthermore, the data was categorized by means of geographical features of altitude, longitude and latitude in three groups each. A combination of meteorological vulnerability from all the categories for each sampling point was then estimated for each locality. From the overall analysis, western sites resulted as the most vulnerable to climatic changes, while eastern and central (latitude) displayed the lowest variability occurrence. By means of downscaling the meteorological variation, it is possible to improve the understanding of mechanisms relying on regional climate variability and climate change. This evaluation can be further incorporated to management strategies for different stakeholders in arid and semi-arid lands, particularly within the Chihuahuan Desert.

Downloads

Download data is not yet available.

Author Biography

  • Omag Cano Villegas, Universidad Juárez del Estado de Durango
    Doctorate Student. Botany Laboratory

References

Abatzoglou JT, Redmond KT, Edwards LM (2009) Classification of regional climate variability in the state of California. Journal of Applied Meteorology and Climatology. 48: 1527-1541.https://doi.org/10.1175/2009JAMC2062.1

Arnold J, Srinivasan R, Muttiah RS, Williams JR(1998). Large area hydrologic modeling and assessment. Part I: model development. Journal of American Water Resources Association. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

Arnold JG, Fohrer N(2005). SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes. 19: 563–572. https://doi.org/10.1002/hyp.5611

Barrows C W, Hoines J, Vamstad M S, Murphy-Mariscal M, Lalumiere K & Heintz J (2016). Using citizen scientists to assess climate change shifts in desert reptile communities. Biological Conservation, 195: 82-88. https://doi.org/10.1016/j.biocon.2015.12.027

Bellon, G, Gastineau G, Ribes A & Le Treut H (2011). Analysis of the tropical climate variability in a two-column framework. Climate dynamics, 37(1-2): 73-81. DOI: 10.1007/s00382-010-0864-5

Bravo-Cabrera J L, Azpra-Romero E, Zarraluqui-Such V, Gay-García C & Estrada-Porrúa F (2010). Significance tests for the relationship between" El Niño" phenomenon and precipitation in Mexico. Geofísica internacional, 49(4): 245-261 DOI: 10.14350/rig.59679

Brito‐Castillo L, Díaz Castro S C & Ulloa Herrera R S (2009). Observed tendencies in maximum and minimum temperatures in Zacatecas, Mexico and possible causes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(2): 211-221.https://doi.org/10.1002/joc.1733

Broecker W (2017). When climate change predictions are right for the wrong reasons. Climatic Change, 142(1-2): 1-6. DOI: 10.1007/s10584-017-1927-y

Bueno-Hurtado P, Sánchez-Cohen I, Esquivel-Arriaga G, Velásquez-Valle MA, Inzunza-Ibarra, MA (2013). Caracterización Hidrológica para cuencas en zonas áridas en México. Agrofaz 13 (2): 125–132.

Castillo LB (2012). Regional pattern of trends in long-term precipitation and stream flow observations: singularities in a changing climate in Mexico. Greenhouse Gases: Emission, Measurement and Management, 387. DOI: 10.5772/32804

Chávez-Ramírez E, González-Cervantes G, González-Barrios J L, Dzul-López E, Sánchez-Cohen I,et al. (2013). Uso de estaciones climatológicas automáticas y modelos matemáticos para determinar la evapotranspiración. Tecnología y ciencias del agua, 4(4): 115-126.

CONAGUA (2014). Programa de Adaptación al Cambio Climático del Complejo Reserva de la Biósfera Mapimí. Comisión Nacional de Áreas Naturales Protegidas. Secretaría de Medio Ambiente y Recursos Naturales y Fondo Mexicano para la Conservación de la Naturaleza. México, 31.

CONAGUA (2019). Programa contra Contingencias Hidráulicas – Cuencas Centrales del Norte. https://www.gob.mx/conagua/acciones-y-programas/cuencas-centrales-del-norte accessed on January 29, 2020.

CONAGUA(2020). Normales climatológicas por estado - https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado, accessed on January 29, 2020.

Conde C, Estrada F, Martínez B, Sánchez O & Gay C (2011). Regional climate change scenarios for México. Atmósfera, 24(1): 125-140.

Coumou D& Rahmstorf S (2012). A decade of weather extremes. Nature climate change, 2(7): 491-496. DOI: 10.1038/NCLIMATE1452

Cuervo‐Robayo A P, Téllez‐Valdés O, Gómez‐Albores M A, Venegas‐Barrera C S, Manjarrez J, et al. (2014). An update of high‐resolution monthly climate surfaces for Mexico. International Journal of Climatology, 34(7): 2427-2437. https://doi.org/10.1002/joc.3848

Eakin H, Tucker C M& Castellanos E (2005). Market shocks and climate variability: the coffee crisis in Mexico, Guatemala, and Honduras. Mountain Research and Development, 25(4): 304-309.

https://doi.org/10.1659/0276-4741(2005)025[0304:MSACVT]2.0.CO;2

Fu R., Yin L, Li W, Arias P A, Dickinson R E, Huang L,et al. (2013). Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences, 110(45): 18110-18115. https://doi.org/10.1073/pnas.1302584110

Galloza M S, López-Santos A, & Martínez-Santiago S (2017). Predicting land at risk from wind erosion using an index-based framework under a climate change scenario in Durango, Mexico. Environmental Earth Sciences, 76(16). DOI:10.1007/s12665-017-6751-1

Hereford R, Webb R H& Longpré C I (2006). Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001. Journal of Arid Environments, 67: 13-34. https://doi.org/10.1016/j.jaridenv.2006.09.019

Hillel D & Rosenzweig C (2002). Desertification in relation to climate variability and change. In Advances in agronomy (Vol. 77, pp. 1-38). Academic Press.

Inzunza-López J O, López-Ariza B, Valdez-Cepeda R D, Mendoza B, Sánchez-Cohen I& García-Herrera G (2011). La variación de las temperaturas extremas en la 'Comarca Lagunera' y cercanías. Revista Chapingo serie ciencias forestales y del ambiente, 17 (spe): 41-61.

Jáuregui E (2005). Possible impact of urbanization on the thermal climate of some large cities in México. Atmósfera, 18(4): 249-252.

López-Santos A& Martínez-Santiago S (2015). Use of two indicators for the socio-environmental risk analysis of Northern Mexico under three climate change scenarios. Air Quality, Atmosphere & Health, 8(4): 331-345. DOI: 10.1007/s11869-014-0286-3

Luers A, Lobell D B, Sklar L S, Addams C L & Matson P A (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4): 255-267. https://doi.org/10.1016/S0959-3780(03)00054-2

Mendoza V M, Villanueva E E, Maderey L E, Martínez J & Fernández A (2004). Vulnerabilidad en el recurso agua de las zonas hidrológicas de México ante el cambio climático global. Martínez, J. y A. Fernández B.(eds.). Cambio Climático: una visión desde México. Instituto Nacional de Ecología. México, DF, 215-226.

Molina-Navarro E, Hallack-Alegría M, Martínez-Pérez S, Ramírez-Hernández J, Mungaray-Moctezuma A&Sastre-Merlín A (2016). Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico. Agricultural Water Management, 175: 29-42. https://doi.org/10.1016/j.agwat.2015.10.029

Newman B D, Wilcox B P, Archer S R, Breshears DD, Dahm C N, Duffy C J,et al. (2006). Ecohydrology of water‐limited environments: A scientific vision. Water resources research, 42(6). https://doi.org/10.1029/2005WR004141

Niraula R, Norman LM, Meixner T, Callegary JB(2012). Multi-gauge calibration for modeling the semi-arid Santa Cruz Watershed in Arizona-Mexico border area using SWAT. Air Soil Water Res. 5: 41–57. https://doi.org/10.4137/ASWR.S9410

Pavia E G, Graef F & Reyes J (2009). Annual and seasonal surface air temperature trends in Mexico. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9): 1324-1329. https://doi.org/10.1002/joc.1787

Pedroza‐Sandoval A, Trejo‐Calzada R, Sánchez‐Cohen I, Yáñez‐Chávez L G, Cruz‐Martínez A, & Figueroa‐Viramontes U (2017). Water Harvesting and Soil Water Retention Practices for Forage Production in Degraded Areas in Arid Lands of Mexico. In New Perspectives in Forage Crops. IntechOpen. DOI: 10.5772/intechopen.69618

Sánchez J, Estrada-Castillón E, Montes S A, Pérez G M, García-Aranda M & García-Morales L J (2014). Diversidad cactoflorística de la zona árida y semiárida de Durango, México. Interciencia, 39(11): 794-802.

Sánchez-Cohen I, Ibarra M A I, Arriaga G E, Paredes J C, Valle M A V & Bustamante WO (2018). The impact of climatic patterns on runoff and irrigation water allocation in an arid watershed of northern Mexico. Meteorology Hydrology and Water Management. Research and Operational Applications, 6 (2): 59 – 66.

DOI: https://doi.org/10.26491/mhwm/90843

Schmidt Jr R H (1979). A climatic delineation of the ‘real’ Chihuahuan Desert. Journal of Arid Environments, 2(3): 243-250.

Schwinning S, Sala O E, Loik M E & Ehleringer J R (2004). Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecología. 141 (2): 191-3. DOI: 10.1007/s00442-004-1683-3

Stahle D W, Cook E R, Burnette D J, Villanueva J, Cerano J, Burns J N & Szejner P (2016). The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Reviews, 149: 34-60. https://doi.org/10.1016/j.quascirev.2016.06.018

Stott P A, Gillett NP, Hegerl G C, Karoly D J, Stone D A, Zhang X, et al. (2010). Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change, 1(2): 192-211. DOI: 10.1002/wcc.34

SWAT-TAMU. 2020. Climatic data from https://globalweather.tamu.edu/, accessed 29, January, 2020.

Trenberth K E (2015). Has there been a hiatus? Science, 349(6249): 691-692.

DOI: 10.1126/science.aac9225

Villanueva-Díaz J, Luckman B H, Stahle D W, Therrell M D, Cleaveland M K, Cerano-Paredes J, et al. (2005). Hydroclimatic variability of the upper Nazas basin: Water management implications for the irrigated area of the Comarca Lagunera, Mexico. Dendrochronologia, 22(3): 215-223. https://doi.org/10.1016/j.dendro.2005.04.005

Weiss J L & Overpeck J T (2005). Is the Sonoran Desert losing its cool? Global Change Biology, 11(12): 2065-2077. https://doi.org/10.1111/j.1365-2486.2005.01020.x

Xue F, Shi P, Qu S, Wang J & Zhou Y (2018). Evaluating the impact of spatial variability of precipitation on streamflow simulation using a SWAT model. Water Policy, 21(1): 178-196. DOI:10.2166/wp.2018.118

Yohe G& Schlesinger M (2002). The economic geography of the impacts of climate change. Journal of Economic Geography, 2(3): 311-341. https://doi.org/10.1093/jeg/2.3.311

Downloads

Published

2021-12-03

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Villegas, O. C., Muro-Pérez, G., Jurado, E., Flores, J. ., Castañeda-Gaytan, J. G., Aguirre, O., & Sánchez, J. (2021). Trends of climate change at the mid-low Nazas-Aguanaval inland basin based on a geographical approach. Ecosistemas Y Recursos Agropecuarios, 8(3). https://doi.org/10.19136/era.a8n3.2704

Similar Articles

1-10 of 147

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)