Proposal for monitoring maize cultivation based on remote sensors
DOI:
https://doi.org/10.19136/era.a10n3.3810Keywords:
crop monitoring, precision agriculture, vegetation indices, remote sensing, unmanned aerial vehiclesAbstract
Remote sensing-based crop monitoring, particularly through unmanned aerial vehicles (UAVs), allows farmers to stay up to date on the health of their crop and locate which areas of their plot require attention, thus implementing preventive and corrective measures to anticipate problems at an early stage and enhance their yield. For this reason, the present methodological proposes to identify the areas where there is a nutrient or water deficiency through images obtained from an unmanned aerial vehicle, integrating information on the agronomic practices expressed by the farmers and the findings from the field. Vegetation indices was used to determine crop health. Likewise, the participation of small farmers is encouraged to sensitize producers of the information that can be obtained through this type of precision agriculture methodologies.
Downloads
References
Akbarian S, Jamnani MR, Xu C, Wang W, Lim S (2023) Plot level sugarcane yield estimation by machine learning on multispectral images: A case study of Bundaberg, Australia. Information Processing in Agriculture. DOI: 10.1016/j.inpa.2023.06.004.
Aguilar-Ávila J, Santoyo-Cortés VH (2013) Estimación de rendimientos en el sector agropecuario. Miguel Ángel Porrúa. Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial, Universidad Autónoma Chapingo, México. 11p. https://repositorio.chapingo.edu.mx/items/89f42 58a-fef6-45a4-aa68-20ff4093fcd0. Fecha de consulta: 04 de noviembre de 2023
Burns B, Green V, Hashem A, Massey JH, Shew A, Adviento-Borbe M, Milad M (2022) Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture 23(3): 791-811.
Buthelezi S, Mutanga O, Sibanda M, Odindi J, Clulow A D, Chimonyo VG, Mabhaudhi T (2023) Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sensing 15(6): 1597. DOI: 10.3390/rs15061597.
Cisneros-Zayas E, Cun-González R, Rosales-Naranjo L, González-Morales D (2018) Lluvia sólida, para un uso eficiente del agua. Resultados preliminares. Revista Ingeniería Agrícola 8: 13-20.
CONAPO (2019) Proyecciones de la población de México y las entidades federativas 2016-2050. Ciudad de México, México. 36p. https://www.gob.mx/conapo/acciones-y-programas/conciliacion-demografica-de- mexico-1950-2015-y-proyecciones-de-la-poblacion-de-mexico-y-de-las-entidades-federativas-2016-2050. Fecha de consulta: 15 de abril de 2023
Cucho-Padin G, Loayza H, Palacios S, Balcazar M, Carbajal M, Quiroz R (2020) Development of low-cost remote sensing tools and methods for supporting smallholder agriculture. Applied Geomatics 12: 247-263.
Chin R, Catal C, Kassahun A (2023) Plant disease detection using drones in precision agriculture. Precision Agriculture 24: 1663-1682. DOI: 10.1007/s11119-023-10014-y
Furukawa F, Maruyama K, Saito Y, Kaneko M (2019) Corn height estimation using UAV for yield prediction and crop monitoring. In: Ram A, Teiji W (ed) Unmanned aerial vehicle: Applications in agriculture and environ- ment. Springer Cham. Switzerland. pp: 51-69. DOI: 10.1007/978-3-030-27157-2.
García-Pardo K, Moreno-Rangel D, Domínguez-Amarillo S, García-Chávez J (2022) Remote sensing for the assessment of ecosystem services provided by urban vegetation: A review of the methods applied. Urban Forestry & Urban Greening 74: 127636. DOI: 10.1016/j.ufug.2022.127636
Gokool S, Mahomed M, Kunz R, Clulow A, Sibanda M, Naiken V, Chetty K, Mabhaudhi T (2023) Crop monitoring in smallholder farms using unmanned aerial vehicles to facilitate precision agriculture practices: A scoping review and bibliometric analysis. Sustainability 15: 3557. DOI: 10.3390/su15043557.
Hafeez A, Husain MA, Singh SP, Chauhan A, Khan MT, Kumar N (2022) Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information Processing in Agriculture 10: 192-203.
INEGI (2021) Cuéntame de México. Ciudad de México, México. https://cuentame.inegi.org.mx/poblacion/habitan tes.aspx?tema=P. Fecha de consulta: 05 de abril de 2023
Jiménez-Jiménez S, Marcial-Pablo M, Ojeda-Bustamante W, Sifuentes-Ibarra E, Inzunza-Ibarra M, Sánchez- Cohen I (2022) VICAL: Global calculator to estimate vegetation indices for agricultural areas with Landsat and Sentinel-2 Data. Agronomy 12: 1518. DOI: 10.3390/agronomy12071518.
Jorge J, Vallbéa M, Solerb J A (2019) Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote 52: 169-177.
Lambertini A, Mandanici E, Tini M, Vittuari L (2022) Technical challenges for multi-temporal and multi-sensor image processing surveyed by UAV for mapping and monitoring in precision agriculture. Remote Sensing 14: 4954. DOI: 10.3390/rs14194954.
López-Calderón M, Estrada-Ávalos J, Martínez-Sifuentes A, Trucíos-Caciano R, Miguel-Valle E (2023) Nitrógeno total en maíz forrajero (Zea mays L.) estimado mediante índices espectrales con el satélite Sentinel-2. Revista Terra Lationoamericana 41: 1-14. DOI: 10.28940/terra.v41i0.1628.
López-Calderón M, Estrada-Ávalos J, Rodríguez-Moreno V, Mauricio-Ruvalcaba J, Martínez-Sifuentes A, Delgado- Ramírez G, Miguel-Valle E (2020) Estimation of total nitrogen content in forage maize (Zea mays L.) using spectral indices: Analysis by random rorest. Agriculture 10: 451. DOI: 10.3390/agriculture10100451.
Lu H, Fan T, Ghimire P, Deng L (2020) Experimental evaluation and consistency comparison of UAV multispectral minisensors. Remote Sensing 12(16): 2542. DOI: 10.3390/rs12162542.
Maresma Á, Ariza M, Martínez E, Lloveras J, Martínez-Casasnovas JA (2016) Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sensing 8(12): 973. DOI: 10.3390/rs8120973.
Marino S, Alvino A (2019) Detection of spatial and temporal variability of wheat cultivars by high-resolution vege- tation indices. Agronomy 9(5): 226. DOI: 10.3390/agronomy9050226.
Meivel S, Maheswari S (2021) Remote sensing analysis of agricultural drone. Journal of the Indian Society of Remote Sensing 49: 689-701.
Monteleone S, de Moraes E, de Faria B, Maia R, Torre A, Toscano A (2020) Exploring the adoption of precision agriculture for irrigation in the context of agriculture 4.0: The key role of internet of things. Sensors 20: 7091. DOI: 10.3390/s20247091.
Munghemezulu C, Mashaba-Munghemezulu Z, Ratshiedana PE, Economon E, Chirima G, Sibanda S (2023) Unmanned aerial vehicle (UAV) and spectral datasets in South Africa for precision agriculture. Data 8(6): 98. DOI: 10.3390/data8060098.
Nhamo L, Magidi J, Nyamugama A, Clulow A, Sibanda M, Chimonyo V, Mabhaudhi T (2020) Prospects of im- proving agricultural and water productivity through unmanned aerial vehicles. Agriculture 10: 256. DOI: 10.3390/agriculture10070256.
Niu X, Ni H, Ma Q, Wang S, Zong L (2023) Identifying ecological security patterns based on ecosystem service supply and demand using remote sensing products. Sustainability 578. DOI: 10.3390/su15010578.
Nonni F, Malacarne D, Pappalardo S, Codato D, Meggio F, De Marchi M (2018) Sentinel-2 data analysis and comparison with UAV multispectral images for precision viticulture. GI Forum 1: 105-116.
Pazhanivelan S, Kumaraperumal R, Shanmugapriya P, Sudarmanian NS, Sivamurugan AP, Satheesh S (2023) Quantification of biophysical parameters and economic yield in cotton and rice using drone technology Agriculture 13(9): 1668. DOI: 10.3390/agriculture13091668.
Peter B, Messina J, Carroll J, Zhi J, Chimonyo V, Lin S, Snapp S (2020) Multi-spatial resolution satellite and sUAS imagery for precision agriculture on smallholder farms in Malawi. Photogrammetric Engineering & Remote Sensing 86: 107-119.
Raeva P, Šedina J, Dlesk A (2019) Monitoring of crop fields using multispectral and thermal imagery from UAV. European Journal of Remote Sensing 52: 192-201.
Rakhymberdina M, Kulenova N, Shaimardanov Z, Assylkhanova Z, Toguzova M, Kassymov D (2022) Using re- mote sensing data to support intelligent agricultural GIS to monitor the condition of arable land and crops 94: 883-888.
Raptis EK, Englezos K, Kypris O, Krestenitis M, Kapoutsis AC, Ioannidis K, Vrochidis S, Kosmatopoulos EB (2023) CoFly: An automated, AI-based open-source platform for UAV precision agriculture applications. SoftwareX 23: 101414. DOI. 10.1016/j.softx.2023.101414.
Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H (2022) Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture 198: 107017. DOI: 10.1016/j.compag.2022.107017.
Rosales-Soto A, Arechavala-Vargas R (2020) Agricultura inteligente en México: Analítica de datos como he- rramienta de competitividad. VinculaTégica EFAN 2: 1415-1427.
SADER-INIFAP (2022) Manuales prácticos para la elaboración de Bioinsumos. Ciudad de México, México. https://www.gob.mx/agricultura/documentos/bioinsumos-transicion-agroecologica. Fecha de consulta: 05 de abril de 2023
Singh A (2022) Precision agriculture in India - Opportunities and challenges. Indian Journal of Fertilisers 18: 308-331.
Shu M, Li Q, Ghafoor A, Zhu J, Li B, Ma Y (2023) Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images. European Journal of Agronomy 151: 126957. DOI: 10.1016/j.eja.2023.126957.
Taco C, López O, Vistín M, López J (2022) Lluvia sólida como estrategia de desarrollo sostenible en el cantón Guaranda en Ecuador. Revista de la Sociedad Científica del Paraguay 27: 31-48.
Tao H, Feng H, Xu L, Miao M, Yang G, Yang X, Fan L (2020) Estimation of the yield and plant height of winter wheat using UAV-Based hyperspectral images. Sensors 20: 1231. DOI: 10.3390/s20041231.
Tahir MN, Lan Y, Zhang Y, Wenjiang H, Wang Y, Naqvi SMZA (2023) Application of unmanned aerial vehicles in precision agriculture. In: Zaman Q (ed) Precision Agriculture. Academic Press. Massachusetts, USA. pp: 55-70.
Upadhyaya A, Jeet P, Sundaram P (2022) Efficacy of drone technology in agriculture: A review. Journal of AgriSearch 9: 189-195.
Yu J, Zhang S, Zhang Y, Hu R, Lawi AS (2023) Construction of a winter wheat comprehensive growth monitoring index based on a fuzzy degree comprehensive evaluation model of multispectral UAV data. Sensors 23(19): 8089. DOI: 10.3390/s23198089
Zhang X, Zhang K, Sun Y, Zhao Y, Zhuang H, Ban W, Chen Y, Fu E, Chen S, Liu J, Hao Y (2022). Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Re- mote Sensing 14(2): 331. DOI: 10.3390/rs14020331.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ecosistemas y Recursos Agropecuarios
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).