Possible effect of climate change on the potential distribution of temperate forest tree species in Nuevo León, Mexico

Authors

DOI:

https://doi.org/10.19136/era.a11n3.4189

Keywords:

Area reduction, conservation areas, forest species, forest management, MaxEnt.

Abstract

The global climate is changing significantly in recent years and with it the distribution of some species. The objective of this study was to estimate the impact of climate change on the potential distribution of 10 temperate forest tree species in the state of Nuevo León, Mexico, and to define conservation areas. The current and future potential distribution of each species was estimated from records and environmental variables, using 75% of the records to train and 25% to validate the models in the MaxEnt algorithm. The occupied surface of the study area was calculated and the percentage of reductions and increases under two scenarios (RCP4.5 and RCP8.5) of climate change was obtained. The results show AUC values above 0.900 for the training and validation data, however, the partial ROC tests showed values above 1.700, while the Z-analyses indicated excellent statistical performance (p<0.01). Of the 10 species, four will experience reductions in their ranges, with A. vejarii 8690 ha, P. pseudostrobus 6852 ha, P. teocote 4197 ha and Q. polymorpha 10828 ha in 2050. The variables with the greatest contribution were Bio8, Bio7, Bio6 and Bio19, so that the modification of any of these variables would mean a considerable reduction in their populations and could even cause some local extinctions. Based on the results obtained, decisions could be made and management measures could be implemented for the conservation of certain species.

Downloads

Download data is not yet available.

Author Biography

  • Gyorgy Eduardo Manzanilla-Quijada, INIRENA-UMSNH

    Se centra en el uso de los Sistemas de Información Geográfica, análisis espacial y modelado geoespacial de procesos y dinámicas ecológicos, enfocado en ecosistemas y especies. Modelar la distribución de especies bajo efectos potenciales de escenarios de cambio climático en la conservación de la biodiversidad. Manejo de los ecosistemas forestales para la toma de decisiones con un enfoque de sustentabilidad.

References

Aceves-Rangel LD, Méndez-González J, García-Aranda MA, Nájera-Luna JA (2018) Distribución potencial de 20 especies de pinos en México. Agrociencia 52(7): 1043-1057.

Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta‐analysis. Ecology Letters 9(8): 968-980. https://doi.org/10.1111/j.1461-0248.2006.00927.x

Aceves-Rangel LD, Méndez-González J, García-Aranda MA, Nájera-Luna JA (2018) Distribución potencial de 20 especies de pinos en México. Agrociencia 52(7): 1043-1057.

Aguirre GJ, Duivenvoorden JF (2010) Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in México. Revista Mexicana de Biodiversidad 81: 875-882.

Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N,

Mulugetta Y, Perez R, Wairiu M, Zickfeld K (2018) Framing and context. In: Global warming of 1.5°C. An IPCC Special

Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

https://www.researchgate.net/publication/369301788_Framing_and_Context_in_Global_warming_of_15C_An_IPCC_Special_Report. Fecha de consulta: 17 de septiembe de 2023.

Ávila CR, Villavicencio GR, Ruiz CJA (2014) Distribución potencial de Pinus herrerae Martínez en el occidente del estado de Jalisco. Revista Mexicana de Ciencias Forestales 5(24): 92-109.

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222(11): 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

Byars SG, Parsons Y, Hoffmann AA (2009) Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Annals of Botany 103(6): 885-899. https://doi.org/10.1093/aob/mcp018

Castellanos-Acuña D, Vance-Borland KW, Clair JBS, Hamann A, López-Upton J, Gómez-Pineda E, Ortega-Rodríguez JM, Sáenz-Romero C (2018) Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change. New forests 49: 297-309. https://doi.org/10.1007/s11056-017-9620-6

Cobos ME, Peterson AT, Barve N, Osorio OL (2019) Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7: e6281. https://doi.org/10.7717/peerj.6281

Corona-Núñez RO, Mendoza-Ponce A, López-Martínez R (2017) Model selection changes the spatial heterogeneity and total potential carbon in a tropical dry forest. Forest ecology and management 405: 69-80. https://doi.org/10.1016/j.foreco.2017.09.018

CONAFOR (2014) Diagnóstico del Programa Presupuestario U036 PRONAFOR-Desarrollo Forestal 2014. https://www.coneval.org.mx/Informes/Evaluacion/Diagnostico/Diagnostico_2014/Diagnostico_2014_SEMARNAT_U036.pdf. Fecha de consulta: 21 de junio de 2022.

Cruz-Cárdenas G, López-Mata L, Silva JT, Bernal-Santana N, Estrada-Godoy F, López-Sandoval JA (2016) Potential distribution model of Pinaceae species under climate change scenarios in Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente 22: 135-148. https://doi.org/10.5154/r.rchscfa.2015.06.027

Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014) An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34(7): 2427-2437. https://doi.org/10.1002/joc.3848

Dawson B, Spannagle M (2009) The complete guide to climate change. Routledge. New York. 436p.

Denvir A, Arima EY, González-Rodríguez A, Young KR (2022) Ecological and human dimensions of avocado expansion in México: Towards supply-chain sustainability. Ambio 1-15.

Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global change biology 19(2): 459-472. https://doi.org/10.1111/gcb.12059

Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann G, Loiselle A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson TA, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire ER, Soberón J, Williams S, Wisz SM, Zimmermann EN (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2): 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and distributions 17(1): 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

ESRI (2016) ArcGIS 10.5. Software diseñado para análisis espacial y Sistemas de Información Geográfica. Environmental Scientific Research Institute. Redlands, California, USA.

FAO (2018) El estado de los bosques del mundo. Las vías forestales hacia el desarrollo sostenible. Food and Agriculture Organization of the United Nations. Roma. 132p. https://dx.doi.org/10.18356/419ad9c6-es

Farjon A, Styles BT (1997) Pinus (Pinaceae). Flora Neotropica Monograph 75. New York Botanical Garden, New York.

Farjon A (2013) Abies vejarii var. mexicana. The IUCN Red List of Threatened Species 2013: e.T34145A2847778. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34145A2847778

Felicísimo AM, Muñoz JR, Mateo G, Villalba C (2012) Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Revista Ecosistemas 21: 1-6. https://doi.org/10.7818/ECOS.2012.21-3.01

Fernández-Eguiarte A, Zavala-Hidalgo J, Romero-Centeno R, Conde-Álvarez AC, Trejo-Vázquez RI (2015) Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México. Instituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales. https://atlasclimatico.unam.mx/cmip5/visualizador. Fecha de consulta: 15 de junio de 2021.

Gavilán RG (2008) La vegetación de alta montaña. En: Redondo M, Palacios M, López F, Santamaría T, Sánchez D (eds) Avances en biogeografía. Universidad Complutense de Madrid, Facultad de Geografía e Historia. Madrid. pp. 165-174.

Gavito ME, Wal HVD, Aldasoro EM, Ayala-Orozco B, Bullén AA, Cach-Pérez M, Casas-Fernandez A, Fuentes A, González-Ezquivel C, Jaramillo-López P, Martinez P, Masera-Cerruti O, Pascual F, Pérez-Salicrup DR, Ruiz-Mercado I, Villanueva G (2017) Ecología, tecnología e innovación para la sustentabilidad: retos y perspectivas en México. Revista Mexicana de Biodiversidad 88: 150-160. https://doi.org/10.1016/j.rmb.2017.09.001

Gallardo-Salazar JL, Sáenz-Romero C, Lindig-Cisneros RA, Blanco-García A, Osuna-Vallejo V (2023) Evaluation of forestry component survival in plots of the program “Sembrando Vida” (Sowing Life) using drones. Forests 14(11): 2117. https://doi.org/10.3390/f14112117

GBIF (2020) Bases de datos geográficos disponibles para 10 especies de clima templado en Nuevo León México. Global Biodiversity Information Facility. http://www.gbif.org. Fecha de consulta: 10 de junio de 2021.

Gómez-Pineda E, Hammond WM, Trejo-Ramírez O, Gil-Fernández M, Allen CD, Blanco-García A, Sáenz-Romero C (2022)

Drought years promote bark beetle outbreaks in Mexican forests of Abies religiosa and Pinus pseudostrobus. Forest Ecology and Management 505: 119944. https://doi.org/10.1016/j.foreco.2021.119944

González-Cubas R, Treviño-Garza EJ, Aguirre-Calderón OA, Foroughbakhch-Pournavab R (2020) Distribución potencial de Abies vejarii (Pinaceae) y su relación con factores ambientales, topográficos y antropogénicos en el noreste de México. Acta Botánica Mexicana (127). https://doi.org/10.21829/abm127.2020.1607

Guzmán-Santiago JC, Santos-Posadas HMDL, Ángeles-Pérez G, Vargas-Larreta B, Gómez-Cárdenas M, Rodríguez-Ortiz G, Corona-Núñez RO (2024) Efecto del cambio climático en la distribución de las especies de clima templado en Oaxaca, México. Botanical Sciences 102(1): 39-53. https://doi.org/10.17129/botsci.3355

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135(2-3): 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9

Guitérrez E, Trejo I (2014) Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad 85(1): 179-188. https://doi.org/10.7550/rmb.37737

Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 3(3): 203-207. https://doi.org/10.1038/NCLIMATE1687

Hansen J, Sato M, Ruedy R, Schmidt GA, Lo K, Persin A (2019) Global temperature in 2018 and beyond. Earth Institute, Columbia University. New York, USA. pp. 173-177.

INEGI (2001) Provincias fisiográficas. Conjunto de datos vectoriales Fisiográficos. continuo Nacional. Escala 1:1,000,000. Serie I. México. https://www.inegi.org.mx/temas/fisiografia/default.html#Descargas. Fecha de consulta: 13 de agosto de 2021.

IPCC (2013) Climate change 2013: the physical science basis. Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324

IPCC (2014) Impacts, adaptation and vulnerability. Technical Summary. Intergovernmental Panel on Climate Change IPCC. Ginebra, Suiza. 72p.

IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001

IPCC (2021) Climate change 2021: The physical science basis. In Masson‐Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press 2(1): 2391. https://doi.org/10.1017/9781009157896

Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. https://dx.doi.org/10.1038/sdata.2017.122

Manzanilla QU, Delgado VP, Hernández RJ, Molina SA, García MJJ, Rocha GM del C (2019) Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botánica Mexicana 126: e1398. https://doi.org/10.21829/abm126.2019.1398

Manzanilla-Quijada GE, Treviño-Garza EJ, Aguirre-Calderón OA, Yerena-Yamallel JI, Manzanilla-Quiñones U (2020a) Current and future potential distribution and identification of suitable areas for the conservation of Cedrela odorata L. in the Yucatan Peninsula. Revista Chapingo Serie Ciencias Forestales 26(3). https://doi.org/10.5154/r.rchscfa.2019.10.075

Manzanilla-Quijada GE, Treviño-Garza EJ, Vargas-Larreta B, López-Martínez JO, Mata-Balderas JM (2020b) Ideal areas with potential for the production of Pinus chihuahuana Engelm. and Pinus leiophylla Schltdl. & Cham. in Mexico. Botanical Sciences 98(2): 305-316. https://doi.org/10.17129/botsci.2514

Manzanilla-Quijada GE, Manzanilla-Quiñones U, Alanís-Rodríguez E, Silva-González E (2024a) Efectos del cambio climático en la distribución de Pinus chihuahuana y Pinus leiophylla: una propuesta para la conservación en México. e-CUCBA (21): 47-58. https://doi.org/10.32870/e-cucba.vi21.322

Manzanilla-Quijada GE, Osuna-Vallejo V, Zacarías-Correa AG, Gómez-Pineda E, Gallardo-Salazar JL, Sáenz-Romero C (2024b) Zonas de transferencia de semillas para la reforestación en la Reserva de la Biosfera Mariposa Monarca y la Meseta Purépecha ante el cambio climático. Revista Chapingo Serie Ciencias Forestales y del Ambiente 30(2): 1-21. https://doi.org/10.5154/r.rchscfa.2023.11.056

Martínez-Sifuentes AR, Villanueva-Díaz J, Manzanilla-Quiñones U, Becerra-López JL, Hernández-Herrera JA, Estrada-Ávalos J, Velázquez-Pérez AH (2020) Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios. iForest-Biogeosciences and Forestry 13(5): 426. https://doi.org/10.3832/ifor3491-013

Mátyás C, Berki I, Czúcz B, Gálos B, Móricz N, Rasztovits E (2010) Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silvatica et Lignaria Hungarica 6: 91-110.

Mirhashemi H, Heydari M, Karami O, Ahmadi K, Mosavi A (2023) Modeling climate change effects on the distribution of oak forests with machine learning. Forests 14(3): 469. https://doi.org/10.3390/f14030469

Naturalista (2021) CONABIO. http://www.naturalista.mx. Fecha de consulta: 25 de marzo de 2024.

Oliver TH, Smithers RJ, Beale CM, Watts K (2016) Are existing biodiversity conservation strategies appropriate in a changing climate?. Biological Conservation 193: 17-26. https://doi.org/10.1016/j.biocon.2015.10.024

Osorio‐Olvera L, Lira‐Noriega A, Soberón J, Peterson AT, Falconi M, Contreras‐Díaz RG, Barve V, Barve N (2020) ntbox: an R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13452

Parmesan C (2006) Ecological and evolutionary response to recent climatic change. Annual Review of Ecology and Systematics 37: 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

Phillips SJ, Anderson RP, Schaphire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. htpp://www.r-project.org. Fecha de consulta: 29 de abril de 2023.

Ramos-Dorantes DB, Villaseñor JL, Ortiz E, Gernandt DS (2017) Biodiversity, distribution, and conservation status of Pinaceae in Puebla, Mexico. Revista Mexicana de Biodiversidad 88: 215-223. https://doi.org/10.1016/j.rmb.2017.01.028

Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change 102: 595-623. https://doi.org/10.1007/s10584-009-9753-5

Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA (2012) Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management 275: 98-106. https://doi.org/10.1016/j.foreco.2012.03.004

Sáenz-Romero C, Rehfeldt GE, Ortega-Rodríguez JM, Marín-Togo MC, Madrigal-Sánchez X (2015) Pinus leiophylla hábitat adecuado para 1961-1990 y el clima futuro. Botanical Sciences 93(4): 709-718. https://doi.org/10.17129/botsci.86

Sáenz-Romero C, Lindig-Cisneros RA, Joyce DG, Beaulieu J, Bradley JStC, Jaquish BC (2016) Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente 22(3): 303-323. https://doi.org/10.5154/r.rchscfa.2014.10.052

Sáenz‐Romero C, Lamy JB, Ducousso A, Musch B, Ehrenmann F, Delzon S, Cavers S, Chałupka W, Dağdaş S, Hansen JK, Lee SJ, Liesebach M, Rau HM, Psomas A, Schneck V, Steiner W, Zimmermann NE, Kremer A (2017) Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global change biology 23(7): 2831-2847. https://doi.org/10.1111/gcb.13576

Salinas M, Vargas M, Zúñiga G, Victor J, Ager A, Hayes JL (2010) Atlas de distribución geográfica de los descortezadores del género Dendroctonus (Curculionidae: Scolytinae) en México. México: Instituto Politécnico Nacional - Comisión Nacional Forestal. https://cepanaf.edomex.gob.mx/sites/cepanaf.edomex.gob.mx/files/files/Monte%20Alto/Articulos%20Cientificos/Atlas%20distribucion%20geograficas%20dendroctonus.pdf. Fecha de consulta: 11 de mayo de 2023.

SEMARNAT (2010) NORMA Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y espe¬cificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación. Cd. Mx., México. http://dof.gob.mx/nota_detalle.php?codigo=5173091 &fecha=30/12/2010. Fecha de consulta: 11 de mayo de 2023.

Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad 88(2): 437-441. https://doi.org/10.1016/j.rmb.2017.03.011

Soto-Correa JC, Lindig-Cisneros R, Sáenz-Romero C (2014) Migración asistida de Lupinus elegans Kunth en ensayos de jardín común en campo. Revista Fitotecnia Mexicana 37(2): 107-116.

Stockwell DR, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecological modelling 148(1): 1-13. https://doi.org/10.1016/S0304-3800(01)00388-X

Tognetti PM, Mazia N, Ibáñez G (2019) Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Annals of Botany 124(2): 307-318. https://doi.org/10.1093/aob/mcz077

Thomas C, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld ASA, Midgley GF, Miles L, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427: 145-149.

Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470(7335): 531-534.

Valencia AS (2004) Diversity of the genus Quercus (Fagaceae) in Mexico. Botanical Sciences (75): 33-53. https://doi.org/10.17129/botsci.1692

Van-Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Climatic change 109(1): 5-31. https://doi.org/10.1007/s10584-011-0148-z

Viveros-Viveros H, Sáenz-Romero C, Vargas-Hernández JJ, López-Upton J, Ramírez-Valverde G, Santacruz-Varela A (2009) Altitudinal genetic variation in Pinus hartwegii Lindl. I: Height growth, shoot phenology and frost damage in seedlings. Forest Ecology and Management 257(3): 836-842. https://doi.org/10.1016/j. foreco.2008.10.021

WMO (2018) Greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2017. World Meteorological Organization. No. 14. https://wmo.int/publication-series/greenhouse-gas-bulletin. Fecha de consulta: 11 de mayo de 2023.

Zi H, Jing X, Liu A, Fan X, Chen SC, Wang H, He JS (2023) Simulated climate warming decreases fruit number but increases seed mass. Global Change Biology 29(3): 841-855. https://doi.org/10.1046/j.1469-8137.2001.00057.x

Downloads

Published

2024-09-27

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Manzanilla-Quijada, G. E., & Treviño-Garza, E. J. . (2024). Possible effect of climate change on the potential distribution of temperate forest tree species in Nuevo León, Mexico. Ecosistemas Y Recursos Agropecuarios, 11(3). https://doi.org/10.19136/era.a11n3.4189

Most read articles by the same author(s)