Effect of LED lighting on in vitro multiplication of Laelia anceps Lindl.
DOI:
https://doi.org/10.19136/era.a12n2.4241Keywords:
Direct organogenesis, light quality, morphogenesis, orchids, temporary immersion bioreactorsAbstract
It has been shown that environmental factors such as light quality and intensity, as well as the lighting regime (photoperiod or continuous light) affect the development of explants in micropropagation systems, due to the induction of physiological responses of different nature. The objective of this research was to evaluate the effect of LED light sources of different spectral composition and growth regulators 6-BAP and 2,4-D at different concentrations on the in vitro development of Laelia anceps Lindl. seedlings. In addition, seedlings obtained in vitro were evaluated in two culture media (semisolid and liquid). The variables evaluated were number of shoots, number of roots, number of leaves, dry matter, chlorophyll a, b, total and carotenoid content. Analyses of variance (ANOVA) were performed with the data and means were compared with the LSD test (p ≤ 0.05). The highest mean number of shoots (4.44 ± 0.44) and number of roots (3.11 ± 1.54) were obtained in the treatment containing 10 mg L-1 of 6-BAP and exposed to red + blue LED light, while the concentration of photosynthetic pigments was higher in the treatment with white and red light. The use of liquid culture medium (temporary immersion systems) showed no significant differences between the tested treatments when compared to the semisolid culture medium.
Downloads
References
Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci VSK, Pinto PJEB (2015) In vitro culture of Achillea millefolium L. quality and intensity of light on growth and production of volatiles. Plant Cell Tissue and Organ Culture 122: 299-308. https://doi.org/10.1007/s11240-015-0766-7
An B, Wei H, Li L, Guo P (2018) Nutrient uptake and utilization and antioxidants of fruits in Red Raspberry (Rubus idaeus L.) cultivar ‘Autumn Bliss’ in response to fertilization under extended photoperiod. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(2): 440-448. https://doi.org/10.15835/nbha46211065
Ávila-Diaz I, Oyama K, Gómez-Alonso C, Salgado-Garciglia R (2009) In vitro propagation of the endangered orchid Laelia speciosa. Plant Cell Tissue and Organ Culture 99(3): 335-343. https://doi.org:10.1007/s11240-009-9609-8
Baghel S, Bansal YK (2015) In vitro regeneration of oil yielding plants - a review. Journal Essent Oil Bear Plants 18: 1022-1050. https://doi.org/10.1080/0972060X.2014.971068
Bhattacharyya P, Kumar V, Van-Staden J (2017) Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. South African Journal of Botany 108: 294-302. https://doi.org/10.1016/j.sajb.2016.11.007
Batista DS, Heitor D, Sousa F, Silva DT, Motta de Castro K, Mamedes-Rodrigues TC, Miranda AN, Ríos-Ríos MA, Vidal FD, Fortini EA, Chagas K, Torres-Silva G, Xavier A, Arencibia AD, Campos OW (2018) Light quality in plant tissue culture: does it matter? In vitro Cellular and Developmental Biology 3(54): 195-215. https://doi.org/10.1007/s11627-018-9902-5
Bello-Bello JJ, Martínez E, Caamal J, Morales V (2016) Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology 15(8): 272-277. https//doi.org/10.5897/AJB2015.14662
Bello-Bello JJ, Pérez-Sato JA, Cruz-Cruz CA Martínez-Estrada E (2017) Light-emitting diodes: Progress in plant micropropagation. In: Jacob-Lopes E, Queiroz-Zepka L, Queiroz MI (eds) Chlorophyll. Intech. London, UK. pp. 93-104. http://dx.doi.org/10.5772/67913
Bello-Bello JJ, Cruz-Cruz CA, Pérez-Guerra JC (2019) A new temporary immersion system for commercial micropropagation in banana (Musa AAA cv Grand Naine). In vitro Cellular and Developmental Biology Plant 55(3): 313-320. https://doi.org/10.1007/s11627-019-09973-7
Cardoso JC, Zanello CA, Chen JT (2020) An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. International Journal Molecular Science 21(3): 985-1016. https://doi.org/10.3390/ijms21030985.
Castañeda-Zárate M, Mata-Rosas M (2012) Conservación de germoplasma in vitro de "Lirio de todos Santos" Laelia anceps Lindl. subsp. anceps f. semialba (Orchidaceae). En: Téllez-Velasco MAA (ed) Conservación de orquídeas en México. Universidad Nacional Autónoma de México. México. pp. 99-103.
Castillo-Pérez L, Maldonado-Miranda, JJ, Alonso-Castro AJ, Carranza-Álvarez C (2019) Efecto de 6-bencilaminopurina y nitrato de potasio sobre la micropropagacion in vitro de Laelia anceps subsp. anceps (Orchidaceae). Biotecnia 22(1): 32-38. http://doi.org/10.18633/biotecnia.v22i1.1122
Castillo-Ontaneda AL, Moreno-Herrera A, García-Batista RM (2020) Eficiencia del sistema de inmersión temporal frente al método de propagación convencional in vitro. Revista Metropolitana de Ciencias Aplicadas 3(2): 173-182. https://doi.org/10.62452/9dq60d52
Centofante A (2020) Light quality on the morphoanatomy and physiology of Campomanesia pubescens (DC.) O. Berg. seedlings. Scientia Horticulturae 259: 108765. https://doi.org/10.1016/j.scienta.2019.108765
Cioć M, Szewczyk A, Żupnik M, Kalisz A, Pawłowska B (2018) LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tissue and Organ Culture 132: 433-447. https://doi.org/10.1007/s11240-017-1340-2
Chase MW (2001) The origin and biogeography of Orchidaceae. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, Vol. 2: Orchidoideae (part one), Oxford University Press, Oxford, USA. pp. 1-9.
Chávez-García JA, Andrade-Rodríguez M, Juárez-López P, Villegas-Torres OG, Sotelo-Nava H, Perdomo-Roldan F (2018) Evaluación de tres sistemas de cultivo in vitro para la multiplicación de microcormos de gladiolo. Revista Fitotecnia Mexicana 41(4-A): 551-554. https://doi.org/10.35196/rfm.2018.4-A.551-554
Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends in Plant Science 16(8): 427-431. https://doi.org/10.1016/j.tplants.2011.03.011
Cortes-Palomec AC, McCauley RA, Oyama K (2019) Maintenance of high levels of genetic diversity and significant fine-scale genetic structure among age classes in single-tree populations of the endangered epiphytic orchid Laelia speciosa (Orchidaceae) in central Mexico. Botanical Sciences 97(3): 366-380. https://doi.org/10.17129/botsci.2169
Dutta GS, Jatothu B (2013) Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Reports 7(3): 211-220. https://doi.org/10.1007/s11816-013-0277-0
Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, García-Plazaola JI (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytology 206: 268-280. https://doi.org/10.1111/nph.13186
Franklin K, Allen T, Whitelam G (2007) Phytochrome A is an irradiance‐dependent red light sensor. The Plant Journal 50(1): 108-117. https://doi.org/10.1111/j.1365-313X.2007.03036.x
Garay-Arroyo A, Sánchez MP, García-Ponce B, Álvarez-Buylla ER, Gutiérrez C (2014) La homeostasis de las auxinas y su importancia en el desarrollo de Arabidopsis thaliana. Revista de Educación Bioquímica 33(1): 13-22.
Georgiev V, Ivanov I, Berkov S, Pavlov A (2014) Temporary immersion systems for Amaryllidaceae alkaloids biosynthesis by Pancratium maritimum L. shoot culture. Journal of Plant Biochemistry and Biotechnology 23(4): 389-398. https://doi.org/10.1007/s13562-013-0222-x
Gómez-Coto FJ (2014) Efecto de la calidad espectral sobre el desarrollo vegetal de Salvia splendens variedad Vista Red and White. Revista Tecnología en Marcha 27(8): 49-54. https://doi.org/10.18845/tm.v27i8.2230
Gupta D, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in vitro plant growth and morphogenesis. Plant Biotechnology Reports 7(3): 211-220. https://doi.org/10.1007/s11816-013-0277-0
Hágsater E, Soto MA, Salazar GA, Jiménez R, López MA, Dressler RL (2005) Las orquídeas de México. Instituto Chinoin, A.C., México. 304p.
Hogewoning S, Trouwborst G, Maljaars H, Poorter H, Van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61(11): 3107-3117. https://doi.org/10.1093/jxb/erq132
Kamal, M.M, Shimasaki, K, Akter, N (2014) Effect of light emutting diode (LED) lamps and N-Acetylglucosamine (NAG) on organogenesis in protocorm-like bodies (PLBs) of a Cymbidium hybrid cultured in vitro. Plant Tissue Culture Biotechnology 24: 273-277.
Kozlowski T, Kramer P (1991) Physiology of woody plants. Academic Press Inc. San Diego California, USA. 641p.
Kurilčik A, Miklušytė-Čanova R, Dapkūnienė S, Zilinskaité S, Kurilčik G, Tamulaitis G, Duchovskis P, Arturas Z (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Central European Journal of Biology 3(2): 161-167. https://doi.org/10.2478/s11535-008-0006-9
Lazo JV, Ascencio J (2010) Efecto de diferentes calidades de luz sobre el crecimiento de Cyperus rotundus. Bioagro 22(2): 153-158.
Leyva-Ovalle OR, Bello-Bello JJ, Murguía-Gonzalez J, Nuñez-Pastrana R, Ramírez-Mosqueda MA (2020) Micropropagation of Guarianthe skinneri (Bateman) Dressler et WE Higging in temporary immersion systems. 3 Biotech 1(10): 1-8. https://doi.org/10.1007/s13205-019-2010-3
Li H, Tang C, Xu Z (2013) The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Science Horticulturae 150: 117-124. https://doi.org/10.1016/j.scienta.2012.10.009
Li X, Gao Y, Wei H, Xia H, Chen Q (2017) Growth, biomass accumulation and foliar nutrient status in fragrant rosewood (Dalbergia odorifera T.C. Chen) seedlings cultured with conventional and exponential fertilizations under different photoperiod regimes. Soil Science and Plant Nutrition 63(2): 153-162. https://doi.org/10.1080/00380768.2017.1312518
Li Y, Dvořák M, Nesterenko P, Nuchtavorn N, Macka M (2018) High power deep UV-LEDs for analytical optical instrumentation. Sensors and Actuators B: Chemical 255: 1238-1243. https://doi.org/10.1016/j.snb.2017.08.085
Lian ML, Murthy HN, Paek KY (2002) Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Science Horticulturae 94: 65-370. https://doi.org/10.1016/S0304-4238(01)00385-5
Lin Y, J Li, B Li, T He, Z Chun (2011) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue and Organ Culture 105(3): 329-335. https://doi.org/10.1007/s11240-010-9871-9
Lindman RH (1974) Analysis of variance in complex experimental designs. Editorial W.H. Freeman and Company. EUA. 352p.
Liu M, Xu Z, Guo S, Tang C, Liu X, Jao X (2014) Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra. Scientia Horticulturae 174(1): 112-118. https://doi.org/10.1016/j.scienta.2014.05.006
Liu X, Jiao X, Chang T, Guo S, Xu Z (2018) Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios. Photosynthetica 56(4): 1212-1217. https://doi.org/10.1007/s11099-018-0814-8
Lu S, Merkle SA (2021) Enhancing hybrid Liquidambar somatic seedling production using a temporary immersion bioreactor. Trees 35: 503-512. https://doi.org/10.1007/s00468-020-02052-0
Mayo-Mosqueda A, Maceda-López LF, Andrade-Canto SB, Noguera-Savelli E, Caamal-Velázquez H, Cano-Sosa J del S, Alatorre-Cobo F (2020) Efficient protocol for in vitro propagation of Laelia rubescens Lindl. from asymbiotic seed germination. South African Journal of Botany 133: 264-272. https://doi.org/10.1016/j.sajb.2020.07.030
Mayo-Mosqueda A, García-Hernández E, Noguera-Savelli E, Cetzal-Ix W, Alatorre-Cobos F (2022) Advances in breeding, bioprospecting, and in vitro culture of Laelia orchid species. Horticulturae 8(2): 103-121. https://doi.org/10.3390/horticulturae8020103
Massa GD, Kim H, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43(7): 1951-1956. https://doi.org/10.21273/HORTSCI.43.7.1951
Mendoza J, Castillo A, Avitia E, Valdez L, García M (2021) Efecto de diferentes proporciones de luz LED azul:roja en plantas de chile habanero (Capsicum chinense Jacq). Biotecnia 23(1): 110-119. https://doi.org/10.18633/biotecnia.v23i1.1288
Meng Q, Boldt J, Runkle ES (2020) Blue radiation interacts with green radiation to influence growth and predominantly controls quality attributes of lettuce. Journal of the American Society for Horticultural Science 145(2): 75-87. https://doi.org/10.21273/JASHS04759-19
Mengxi L, Zhigang X, Yang Y, Yijie F (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue and Organ Culture 106(1): 1-10. https://doi.org/10.1007/s11240-010-9887-1
Moon HK, Park SY, Kim YW, Kim CS (2006) Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. Journal of Plant Biology 49(2): 174-179. https://doi.org/10.1007/BF03031014
Morini S, D’Onofrio C, Bellocchi G, Fisichella M (2000) Effect of 2,4-D and light quality on callus production and differentiation from in vitro cultured quince leaves. Plant Cell Tissue and Organ Culture 63(1): 47-55. https://doi.org/10.1023/A:1006456919590
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murillo-Talavera MM, Pedraza-Santos ME, Gutiérrez-Rangel N, Rodríguez-Mendoza M de las N, Lobit P, Martínez-Palacios A (2016) Led light quality and in vitro development of Oncidium tigrinum and Laelia autumnalis (Orchidaceae). Agrociencia 50(8): 1065-1080.
Murthy HN, Paek KY, Park SY (2018) Micropropagation of orchids by using bioreactor technology. In: Lee YI, Yeung ET (eds) Orchid propagation: From laboratories to greenhouses methods and protocols. Springer Protocols Handbooks. Humana Press, New York, NY. pp. 195-208. https://doi.org/10.1007/978-1-4939-7771-0_9
Olatunji D, Geelen D, Verstraeten I (2017) Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences 18(12): 2587. https://doi.org/10.3390/ijms18122587
Ortega-Loeza MM, Salgado-Garciglia R, Gomez-Alonso C, Avila-Díaz I (2011) Acclimatization of the endangered Mexican epiphytic orchid, Laelia speciosa (H.B.K.) Schltr. Eu. Journal Environmental Science 1(2): 48-54. https://doi.org/10.14712/23361964.2015.46
Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Sánchez IJ (2017) Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany 109(1): 288-293. https://doi.org/10.1016/j.sajb.2017.01.205
Ramírez-Mosqueda MA, Cruz-Cruz CA, Atlahua-Temoxtle J, Bello-Bello JJ (2019) In vitro conservation and regeneration of Laelia anceps Lindl. South African Journal of Botany 121: 219-223. https://doi.org/10.1016/j.sajb.2018.11.010
Rehman M, Fahad S, Saleem MH, Hafeez M, Rahman MH, Liu F, Deng G (2020) Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 58(4): 922-931. https://doi.org/10.32615/ps.2020.040
Salaya-Reyna SK, Villanueva-Couoh E, Garruña-Hernández R, Caamal-Velázquez JH (2021) Mixture of vegetable extracts and silver nanoparticles as disinfectant agents in the in vitro propagation of Dendrobium nobile Lindl. Propagation of Ornamental Plants 22(2): 58-64.
San-José MC, Blazquez N, Cernadas MJ, Janeiro LV, Cuenca B, Sánchez C, Vidal N (2020) Temporary immersion systems to improve alder micropropagation. Plant Cell Tissue and Organ Culture 143(2): 265-275.
Selosse MA, Roy M (2009) Green plants that feed on fungi: Facts and questions about mixotrophy. Trends in Plant Science 14(2): 6 4-70. https://doi.org/10.1016/j.tplants.2008.11.004
SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental Especies nativas de México de flora y fauna silvestres Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio Lista de especies en riesgo. Diario Oficial de la Federación 30 diciembre, 2010. https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm. Fecha de consulta: 14 de febrero 2025.
Sharma J, Koul A, Sharma S, Shankarayan R, Mallubhotla S (2021). In vitro propagation of Nanorrhinum ramosissimum (Wall.) Betsche: A traditionally important medicinal plant. Kuwait Journal of Science 48(3): 1-10. https://doi.org/10.48129/kjs.v48i3.9100
Shen RS, Hsu ST (2018) Virus elimination through meristem culture and rapid clonal propagation using a Temporary Immersion System. In: Lee YI, Yeung ET (eds) Orchid propagation: From laboratories to greenhouses methods and protocols. Springer Protocols Handbooks. Humana Press, New York, NY. pp. 267-282. https://doi.org/10.1007/978-1-4939-7771-0_14
Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro plants act breaks and rearrangements Doritaenopsis. Plant Physiology 30(3): 339-343. https://doi.org/10.1007/s11738-007-0128-0
Silva ST, Bertolucci SKV, Da Cunha SHB, Lazzarini LES, Tavares MC, Pinto JEBP (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell, Tissue and Organ Culture 129(3): 501-510. https://doi.org/10.1007/s11240-017-1195-6
Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biolog 11: 118-131.
Solarte M, EL Moreno, LM Melgarejo (2010) Fotosíntesis y pigmentos vegetales. En: Melgarejo-Muñoz LM (ed) Experimentos en Fisiología Vegetal. Universidad Nacional de Colombia. Colombia. pp. 77-87.
Sorcia-Morales M, Gómez-Merino FC, Sánchez-Segura L, Spinoso-Castillo JL, Bello-Bello JJ (2021) Multi-Walled Carbon Nanotubes Improved Development during In Vitro Multiplication of Sugarcane (Saccharum spp.) in a Semi-Automated Bioreactor. Plants 10(10): 2015-2025. https://doi.org/10.3390/plants10102015
Ticktin T, Quazi S, Dacks R, Tora M, McGuigan A, Hastings Z, Naikatini A (2018) Linkages between measures of biodiversity and community resilience in Pacific Island agro-forests. Conservation Biology 32: 1085-1095. https://doi.org/10.1111/cobi.13152
Ticktin T, Mondragón D, Lopez-Toledo L, Dutra-Elliott D, Aguirre-León E, Hernández-Apolinar M (2020) Synthesis of wild orchid trade and demography provides new insight on conservation strategies. Conservation Letters 13: 1-10. https://doi.org/10.1111/conl.12697
Topchiy NM, Sytnik SK, Syvash OO, Zolotareva OK (2005) The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetica 43(3): 451-456. https://doi.org/10.1007/s11099-005-0072-4
Tripathy BC, Brown CS (1995) Root-Shoot interaction in the greening of wheat seedlings grown under Red Light. Plant Physiology 107(2): 407-411. https://doi.org/10.1104/pp.107.2.407
Vergara-Galicia J, Aguirre-Crespo F, Castillo-España P, Arroyo-Mora A, López-Escamilla AL, Villalobos-Molina R, Estrada-Soto S (2010) Micropropagation and vasorelaxant activity of Laelia autumnalis (Orchidaceae). Natural Product Research 24(2): 106-114. https://doi.org/10.1080/14786410802340820
Wang J, Lu W, Tong Y, Yang Q (2016) Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 250(7): 1-10. https://doi.org/10.3389/fpls.2016.00250
Wang Z, Zhao Y, Wei H (2017) Chitosan oligosaccharide addition affects current-year shoot of post-transplant Buddhist pine (Podocarpus macrophyllus) seedlings under contrasting photoperiods. IForest - Biogeosciences and Forestry 10(4): 715-721. https://doi.org/10.3832/ifor2302-010
Wellburn RA (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal Plant Physiology 144: 307-313. http://dx.doi.org/10.1016/S0176-1617(11)81192-2
Zhao M, Liao H, Molokeev MS, Zhou Y, Zhang Q, Liu Q, Xia Z (2019) Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light: Science & Applications 8(1): 38. https://doi.org/10.1038/s41377-019-0148-8
Zhang B, Sarsaiyab S, Pana X, Jina L, Xub D, Zhangc B, Dunsa GJ, Shib J, Chena J (2018) Optimization of nutritional conditions using a Temporary Immersion Bioreactor system for the growth of Bletilla striata pseudobulbs and accumulation of polysaccharides. Scientia Horticulturae 240: 155-161. https://doi.org/10.1016/j.scienta.2018.06.010
Zhang Y, Kaiser E, Zhang Y, Yang Q, Li T (2019) Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). Physiologia Plantarum 167: 144-158. https://doi.org/ 10.1111/ppl.12876
Zhen S, van-Iersel MW (2017) Far-red light is needed for efficient photochemistry and photosynthesis. Journal Plant Physiology 209: 115-122. https://doi.org/10.1016/j.jplph.2016.12.004
Zhu X, Yang R, Han Y, Hao J, Liu Ch, Fan S (2020) Effects of different NO3−:NH4+ ratios on the photosynthesis and ultrastructure of lettuce seedlings. Horticulture, Environment, and Biotechnology 61(3): 459-472. https://doi.org/10.1007/s13580-020-00242-w
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).