Biotic pollination in Phaseolus coccineus: Impact on yield components and seed characteristics

Authors

DOI:

https://doi.org/10.19136/era.a12n2.4301

Keywords:

Runner bean, agronomic management, pollinators, productivity

Abstract

Biotic pollination enhances yields of crops such as Phaseolus coccineus (runner bean), an important food legume in Mexico. Although some studies have assessed the effect of excluding pollinators in this species, it remains unclear whether agronomic management or flower color have additional effects. Thus, the objective of this study was to determine the significance of biotic pollination and to assess the effect of contrasting management systems and flower colors on the yield components and seed characteristics in P. coccineus. We examined the combinations arising from two systems (technified and traditional) and two varieties with flowers of different color (white and red), and compared plants with and without access of pollinators. We measured fourteen variables, which were analyzed by the Mann-Whitney rank test, cluster analysis, and principal component analysis. In all the management-variety combinations, plants with access of pollinators developed 97 % more normal fruits and seeds, compared to plants without access. Attributes such as seed length and width were greater in plants without pollinator access in both agronomic systems and varieties. The interaction with pollinators, and not management system or flower color, was the main explicative factor. Biotic pollination had beneficial effects on yield components, underscoring its importance for runner bean and highlighting the need to implement agricultural practices that conserve this ecosystem service in a sustainable manner.

Downloads

Download data is not yet available.

References

Aguilar-Benítez G, Peña-Valdivia CB, García-Nava RJ, Ramírez-Vallejo P, Benedicto-Valdés SG, Molina-Galán JD (2012) Rendimiento de frijol (Phaseolus vulgaris L.) en relación con la concentración de vermicompost y déficit de humedad en el sustrato. Agrociencia 46: 37-52.

Blackwall FLC (1971) A study of the plant/insect relationships and pod-setting in the runner bean (Phaseolus multiflorus). Journal of Horticultural Science 46(4): 365–379. https://doi:10.1080/00221589.1971.11514416

Búrquez A, Sarukhán J (1984) Biología floral de poblaciones silvestres y cultivadas de Phaseolus coccineus L. II. Sistemas reproductivos. Boletín de la Sociedad Botánica de México 46: 3-12. https://doi.org/10.17129/botsci.1311

Búrquez A, Sarukhán KJ (1980) Biología de poblaciones silvestres y cultivadas de Phaseolus coccineus L. I. Relaciones planta-polinizador. Boletín de la Sociedad Botánica de México 39: 5-24. https://doi.org/10.17129/botsci.1173

Carabalí-Banguero D, Montoya-Lerma J, Carabalí-Muñoz A (2018) Efecto de la exclusión de insectos visitantes florales en el cuajado de frutos de Persea americana (Lauraceae) cv. Hass. Acta Zoológica Mexicana 34: e3412121. https://doi:10.21829/azm.2018.3412121

Checa COE, Yama EVM, Fuel TSM (2011) Evaluación por componentes de rendimiento de nueve genotipos y un testigo de fríjol arbustivo Phaseolus vulgaris L. Revista de Ciencias Agrícolas 28(1): 73-90.

Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Research 34(11): 1489-1508. https://doi.org/10.1016/0042-6989(94)90151-1

Cunha NL, Chacoff N, Saez A, Schmucki R, Galetto L, Devoto M, Carrasco J, Mazzei M, Castillo S, Palacios T, Vesprini J, Agostini K, Saraiva A, Woodcock B, Ollerton J, Aizen M, Mazzei M (2023) Soybean dependence on biotic pollination decreases with latitude. Agriculture Ecosystems & Environment: 108376. https://doi.org/10.1016/j.agee.2023.108376

Duke JA (1981) Handbook of legumes of world economic importance. PlenumPress, New York, United States, and London, United Kingdom. 345p. https://doi.org/10.1007/978-1-4684-8151-8

Eilers EJ, Kremen C, Greenleaf SS, Garbe AK, Klein AM (2011) Contribution of pollinator mediated crops to nutrients in the human food supply. Plos One 6(6): e21363. https://doi.org/10.1371/journal.pone.0021363.

Escalante AM, Coello G, Eguiarte LE, Piñero D (1994) Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). American Journal of Botany 81(9): 1096-1103. https://doi.org/10.2307/2445471

Escalante EJA, Kohashi SJ (1993) El rendimiento y crecimiento del frijol. Manual para la toma de datos. Colegio de Postgraduados. Montecillo, Texcoco, Estado de México, México. 84p.

Fageria NK, Santos AB (2008) Yield physiology of dry bean. Journal of Plant Nutrition 31(6): 983-1004. https://doi.org/10.1080/01904160802096815

Fohouo FNT, Tope SF, Brückner D (2014) Foraging and pollination behaviour of Xylocopa olivacea (Hymenoptera: Apidae) on Phaseolus coccineus (Fabaceae) flowers at Ngaoundéré (Cameroon). International Journal of Tropical Insect Science 34(2): 127-137. https://doi.org/10.1017/S1742758414000241

Gardner FP, Pearce RB, Mitchell RL (1989) Physiology of crop plants. Iowa State University Press. Ames, Iowa, USA. 325p.

Hand LF, Keaster AJ (1967) The environment of an insect field cage. Journal of Economic Entomology 60(4): 910-915. https://doi.org/10.1093/jee/60.4.910

Henríquez-Piskulich PA, Schapheer C, Vereecken NJ, Villagra C (2021) Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case study. Sustainability 13: 6728. https://doi.org/10.3390/su13126728

Hünicken PL, Morales CL, Aizen MA, Anderson GKS, García N, Garibaldi LA (2021) Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment 320: 107573. https://doi.org/10.1016/j.agee.2021.107573.

Ibarra-Perez FJ, Barnhart D, Ehdaie B, Knio KM, Waines JG (1999) Effects of insect tripping on seed yield of common bean. Crop Science 39(2): 428-433. https://doi.org/10.2135/cropsci1999.0011183x0039000200022x

INEGI (2010) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Calpan, Puebla. Instituto Nacional de Estadística Geografía e Informática. México. 9p. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/21/21026.pdf. Fecha de consulta: 11 de agosto de 2024.

InfoStat (2020) Centro de transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. Fecha de consulta: 11 de agosto de 2020.

Kendall DA, Smith BD (1976) The pollinating efficiency of honeybee and bumblebee visits to flowers of the runner bean Phaseolus coccineus L. Journal of Applied Ecology 13(3): 749-752. https://doi.org/10.2307/2402252

Koltowski Z (2004) Flowering biology, nectar secretion and insect foraging of the runner bean (Phaseolus coccineus L.). Journal of Apicultural Science 48(2): 53-60.

Lázaro A, Lundgren R, Totland Ø (2015) Pollen limitation, species’ floral traits and pollinator visitation: Different relationships in contrasting communities. Oikos 124(2): 174–186. https://doi.org/10.1111/oik.01525.

López-Báez LI, Taboada-Gaytán OR, Gil-Muñoz A, López PA, Ortiz-Torres E, Vargas-Vázquez MLP, Díaz-Cervantes R (2018) Diversidad morfoagronómica del frijol ayocote en el altiplano centro-oriente de Puebla. Revista Fitotecnia Mexicana 41(4-A): 487-497. https://doi.org/10.35196/rfm.2018.4-A.487-497

Madriz P, Jáuregui D, Warnock R (2008) Aborción de óvulos y semillas de caraota (Phaseolus vulgaris L.) y caracterización de anormalidades morfoanatómicas, en dos cultivares en dos localidades de Venezuela. Interciencia 33(12): 910-915.

Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. Vol. VI. The perception of colour. Macmillan Press. London, UK. pp. 262-293.

Moreno NP (1984) Glosario botánico ilustrado. Compañía Editorial Continental S. A. de C. V. Cd. México, México. 300p.

Nelson LA, Rieske LK (2014) Microclimatic variation within sleeve cages used in ecological studies. Journal of Insect Science 14(167): 2014. https://doi.org/10.1093/jisesa/ieu029

Nikhil-Reddy KS (2025) Pollinator health: balancing agricultural practices with conservation efforts. Indian Entomologist 6(1): 55-58.

Olsen SL, Evju M, Åström J, Løkken JO, Dahle S, Andresen JL, Eide NE (2022) Climate influence on plant–pollinator interactions in the keystone species Vaccinium myrtillus. Ecology and Evolution 12(5): e8910. https://doi.org/10.1002/ece3.8910.

Pan K, Marshall L, Biesmeijer K, De Snoo GR (2022) The distributions of insect, wind and self pollination of plants in the Netherlands in relation to habitat types and 3D vegetation structure. Journal of Pollination Ecology 31: 16–28. https://doi.org/10.26786/1920-7603(2022)684.

Pando JB, Fohouo FNT, Tamesse JL (2011) Foraging and pollination behaviour of Xylocopa calens Lepeletier (Hymenoptera: Apidae) on Phaseolus coccineus L. (Fabaceae) flowers at Yaounde (Cameroon). Entomological Research 41(5): 185-193. https://doi.org/10.1111/j.1748-5967.2011.00334.x

Perrot T, Gaba S, Roncoroni M, Gautier JL, Saintilan A, Bretagnolle V (2019) Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic and Applied Ecology 34: 75-84. https://doi.org/10.1016/j.baae.2018.09.005

Phillips RD, Peakall R, Van der Niet T, Johnson SD (2020) Niche perspectives on plant–pollinator interactions. Trends in Plant Science 25: 779-793. https://doi.org/10.1016/j.tplants.2020.03.009

Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, Mattila HR, Foster JE, Clark P, Jones GD (2001) Corn pollen deposition on milkweeds in and near cornfields. Proceedings of the National Academy of Sciences USA 98: 11919-11924. https://doi.org/10.1073/pnas.21128749.

Quagliotti L, Marletto F (1987) Research on the pollination of runner bean (Phaseolus coccineus L.) for dry grain production. Advances in Horticultural Science 1(1): 43-49.

Ramírez-Vallejo P, Acosta-Gallegos JA (1995) Factores abióticos que afectan la productividad del frijol común (Phaseolus vulgaris L.) con énfasis en la sequía. In: Pérez MJ, Ferrera CR, García ER (eds) Diversidad genética y patología del frijol. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Estado de México. pp. 52-68.

Ritchie SW, Hanway JJ, Thompson HE, Benson GO (1992) How a soybean plant develops. Special Report No. 53. Iowa State University of Science and Technology. Cooperative Extension Service. Ames, Iowa, USA. 20p.

Rodiño AP, Lema M, Pérez-Barbeito M, Santalla M, De Ron AM (2007) Assessment of runner bean (Phaseolus coccineus L.) germplasm for tolerance to low temperature during early seedling growth. Euphytica 155: 63-70. https://doi.org/10.1007/s10681-006-9301-6

Ruíz-Salazar R, Mayek-Pérez N, Vargas-Vázquez MLP, Hernández-Delgado S, Muruaga-Martínez JS (2019) Análisis de la estructura poblacional del frijol ayocote (Phaseolus coccineus L.) mediante AFLP. Polibotánica 47: 13-24. https://doi.org/10.18387/polibotanica.47.2

SADER, SEMARNAT, SENASICA, CONABIO, CONANP (2021) Estrategia Nacional para la Conservación y Uso Sustentable de Polinizadores en México. https://www.gob.mx/cms/uploads/attachment/file/629651/ENCUSP_calidad_media_corregido.pdf. Fecha de consulta: 11 de agosto de 2024.

Salcedo JM (2008) Regeneration guidelines: Common bean. In: Dulloo ME, Thormann I, Jorge MA, Hanson J (eds) Crop specific regeneration guidelines. CGIAR System-wide Genetic Resource Programme, Rome, Italy. https://cropgenebank.sgrp.cgiar.org/index.php/crops-mainmenu-367/other-crops-regeneration-guidelines-mainmenu-290/bean-mainmenu-397. Fecha de consulta: 30 de mayo de 2025.

Sánchez DS, Vidal BJ (2015) Vermicomposta y sustentabilidad: Respuesta del frijol (Phaseolus vulgaris L.) de temporal a la aplicación de enmienda orgánica. Revista Mexicana de Ciencias Agrícolas 1: 441-444.

SAS (2022) SAS® On Demand for Academics. (2022) https://www.sas.com/es_mx/software/on-demand-for-academics.html. Fecha de consulta: 15 de abril de 2022.

Schwember AR, Carrasco B, Gepts P (2017) Unraveling agronomic and genetic aspects of runner bean (Phaseolus coccineus L.). Field Crops Research 206: 86-94. https://doi.org/10.1016/j.fcr.2017.02.020

Shivanna K, Tandon R, Koul M (2020) ‘Global Pollinator Crisis’ and its impact on crop productivity and sustenance of plant diversity. In: Tandon R, Shivanna K, Koul M (eds) Reproductive ecology of flowering plants: patterns and processes. Springer. Singapore. pp. 395-413. https://doi.org/10.1007/978-981-15-4210-7_16

SMN (2025) Información Estadística Climatológica. Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica. Fecha de consulta: 25 de mayo de 2025.

Smith MR, Mueller ND, Springmann M, Sulser TB, Garibaldi LA, Gerber J, Wiebe K, Myers SS (2022) Pollinator deficits, food consumption, and consequences for human health: a modeling study. Environmental Health Perspectives 130(12): 127003. https://doi.org/10.1289/EHP10947

Sood VK, Sanadya SK, Kumar S, Chand S, Kapoor R (2022) Health benefits of oat (Avena sativa) and nutritional improvement through plant breeding interventions. Crop and Pasture Science 74(11): 993-1013. https://doi.org/10.1071/CP22268

Sosenski P, Domínguez CA (2018) El valor de la polinización y los riesgos que enfrenta como servicio ecosistémico. Revista Mexicana de Biodiversidad 89(3): 961-970. https://doi.org/10.22201/ib.20078706e.2018.3.2168

Tanda AS (2022) Why insect pollinators are important in crop improvement? Indian Journal of Entomology 84(1): 223-236. https://doi.org/10.55446/IJE.2021.42

Tetreaul T y Aho K. (2021) An updated insect exclosure design for pollination ecology. Journal of Pollination Ecology 29(19): 249-257. https://doi.org/10.26786/1920-7603(2021)651

Todd J, Pan Y-B, Boykin D (2020) Fidelity of sugarcane crosses assessed with SSR markers. Agronomy 10(3): 386. https://doi.org/10.3390/agronomy10030386

Vargas-Vázquez P, Muruaga-Martínez JS, Martínez-Villarreal SE, Ruiz-Salazar R, Hernández-Delgado S, Mayek-Pérez N (2011) Diversidad morfológica del frijol ayocote del Carso Huasteco de México. Revista Mexicana de Biodiversidad 82(3): 767-775. https://doi.org/10.22201/ib.20078706e.2011.3.698

Wagner DL (2020) Insect declines in the Anthropocene. Annual Review of Entomology 65: 457–480. https://doi.org/10.1146/annurev-ento-011019-025151

Wietzke A, Westphal C, Gras P, Kraft M, Pfohl K, Karlovsky P, Pawelzik E, Tscharntke T, Smit I (2018) Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems and Environment 258: 197–204. https://doi.org/10.1016/j.agee.2018.01.036

Wróblewska A (1991) Attractiveness of Phaseolus L. flowers for pollinating insects. Acta Horticulturae 288: 321–325. https://doi.org/10.17660/actahortic.1991.288.51

Xerces Society (2019) Building climate resilience into pollinator habitat restoration in the Central Valley. https://xerces.org/sites/default/files/publications/19-044_Climate%20Change%20FS_web%20-%20Krystal%20Eldridge.pdf. Fecha de consulta: 31 de mayo de 2025.

Downloads

Published

2025-08-15

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Cué Hernández, K. A., Gil Muñoz, A., Aguirre-Jaimes, A., López, P. A., & Taboada Gaytán, O. R. (2025). Biotic pollination in Phaseolus coccineus: Impact on yield components and seed characteristics. Ecosistemas Y Recursos Agropecuarios, 12(2). https://doi.org/10.19136/era.a12n2.4301

Most read articles by the same author(s)