Induction of bioactive metabolites in Piper psilorhachis C.DC. (Piperaceae) and antibacterial activity by chitosan

Authors

DOI:

https://doi.org/10.19136/era.a12n2.4542

Keywords:

Elicitor, Extracts, MIC, Pahogenic bacteria

Abstract

Bacterial resistance to antibiotics has driven the search for new chemical compounds with biological activity derived from plants. An example of these bioactive compounds are piperamides, terpenes, alkaloids, and others found in species of the Piper L genus. Additionally, it has been observed that certain elicitors can modify the production of these bioactive compounds. Therefore, the effect of chitosan on the induction of secondary metabolites and antibacterial activity of extracts from Piper psilorhachis C. DC. was evaluated. Three wild populations of P. psilorhachis were selected, and ten individuals per population were sprayed with a 1 mg/mL chitosan solution. Subsequently, leaves were collected, and ethanolic extracts were made, with the total content of flavonoids, phenols, alkaloids, terpenes, and salicylic acid quantified using spectrophotometry. Additionally, a phytochemical profile was determined by GC-MS. Antibacterial activity was evaluated against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), and Pseudomonas fluorescens (ATCC 15635) using the plate dilution method, and the Minimum Inhibitory Concentration (MIC) was estimated. Chitosan stimulated the production of flavonoids, phenols, and terpenes in all three populations compared to the control, while alkaloids and salicylic acid only significantly increased in one population. Terpene and amide precursors were tentatively identified by GC-MS. Antibacterial activity was significantly higher in the chitosan-treated extracts, with Escherichia coli being the most sensitive strain.

Downloads

Download data is not yet available.

Author Biography

  • Oscar Carmona-Hernández, Universidad Veracruzana

    Licenciado en Biología, Maestro y Doctor en Ciencias Agropecuarias por la Universidad Veracruzana, desarrollo de investigación en productos naturales con potencial biológico para el control de patógenos

References

Aboody MSA, Mickymaray S (2020) Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 9 (45) 9(2): e45. https://doi.org/10.3390/antibiotics9020045

Alois KM, Sangiwa GC, MarcialeCM, Sahini MG (2022) Phytochemical constituents and larvicidal efficacy of leaf extracts of Aristolochia elegans (Aristolochiaceae). South African Journal of Botany 146: 383-394. https://doi.org/10.1016/j.sajb.2021.11.015

Alsheikh HMA, Sultan I, Kumar V, Rather IA, Al‐sheikh H, Jan AT, Haq QMR (2020) Plant‐based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 9(8): e480. https://doi.org/10.3390/antibiotics9080480

Alves NSF, Kaory ISG, Carneiro AR, Albino UB, Setzer WN, Maia JG, Andrade EH, da Silva JKR (2022) Variation in Peperomia pellucida growth and secondary metabolism after rhizobacteria inoculation. PloS One 17(1): e0262794. https://doi.org/10.1371/journal.pone.0262794

Balfe E, Kowalski E, Leavitt SA (2023) Kirby-Bauer disc diffusion method indicates absence of antimicrobial properties in Ariolimax columbianus Mucus. Humboldt Journal of Microbiology 23(1).

Bezerra DP, Vasconcellos MC, Machado MS, Villela IV, Rosa RM, Moura DJ, Pessoa C, Moraes MO, Rilveira ER, Lima MAS, Aquino NC, Hernriques JAP, Saffi J, Costa-Lotufo LV (2009) Piplartine induces genotoxicity in eukaryotic but not in prokaryotic model systems. Mutation Research - Genetic Toxicology and Environmental Mutagenesis 677(1-2): 8-13. https://doi.org/10.1016/j.mrgentox.2009.04.007

Blainski A, Lopes GC, De Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18: 6852-6865. https://doi.org/10.3390/molecules18066852

Brüssow H (2024) The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology 17(7): e14510. https://doi.org/10.1111/1751-7915.14510

Caicedo-López LH, Aranda ALV, Sáenz de la O D, Gómez CEZ, Márquez EE, Zepeda HR (2021) Elicitores: implicaciones bioéticas para la agricultura y la salud humana. Revista Bioética 29(1): 76-86. https://doi.org/10.1590/1983-80422021291448

Carmona-Hernández O, Fernández MS, Palmeros-Sánchez B, Lozada-García JA (2014) Actividad insecticida de extractos etanólicos foliares de nueve piperaceas (Piper L.) en Drosophila melanogaster. Revista Internacional de Contaminación Ambiental 30: 67-73.

Carmona-Hernández O, LaccettiL, Martínez-Hernández MJ, Luna-Rodríguez M, Fernández MS, Guerrero-Analco JA, Asselin H, Scopece G, Lozada-García JA (2023). Plant conservation in the Mesoamerican biodiversity hotspot: a case study on the Piper genus in Veracruz (Mexico). Tropical Ecology 64(2): 324-336. https://doi.org/10.1007/s42965-022-00271-9

Corzo D (2012) Evaluación de la actividad antimicrobiana del extracto etanólico de Cestrum buxifolium Kunth. Revista Mexicana de ciencias farmacéuticas 43(3): 81-86

Fan R, Tao XY, Xia ZQ, Sim S, Hu LS, Wu BD, Wang QH, Hao CY (2022). Comparative transcriptome and metabolome analysis of resistant and susceptible Piper species upon infection by the oomycete Phytophthora capsici. Frontiers in Plant Science 13: e864927. https://doi.org/10.3389/fpls.2022.864927

Fernández MDS, Hernández-Ochoa F, Carmona-Hernández O, Luna-Rodríguez M, Barrientos-Salcedo C, Asselin H, Lozada-García JA (2021) Chitosan-induced production of secondary metabolites in plant extracts of Piper auritum, and the in vitro fungicidal activity against Fusarium oxysporum f. sp. vanillae. Revista Mexicana de Fitopatología 39(1): 1-9. https://doi.org/10.18781/r.mex.fit.2006-6

Gallegos-Morales G, Sánchez-Yáñez JM, Hernández-Castillo FD (2022) Chitosan in the protection of agricultural crops against phytopathogens agents. Horticulture International Journal 6(3): 168-175.

Ghorai N, Chakraborty S, Gucchait S, Kumar S, Biswas S (2017) Estimation of total terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protocol Exchange. https://doi.org/10.1038/protex.2012.055

Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18: 241-272. https://doi.org/10.1007/s11101-018-9591-z

Hammer Ø, Harper DA (2001) Past: paleontological statistics software package for education and data anlysis. Palaeontologia electronica 4(1).

INEGI. (2022) Mapa digital de México. https://www.inegi.org.mx/temas/mapadigital/. Fecha de consulta: 02 de Septiembre de 2023

Kattupalli D, Pinski A, Sreekumar S, Usha A, Girija A, Beckmann M, Jose MLA, Eppurathu SV (2021) Non‐targeted metabolite profiling reveals host metabolomic reprogramming during the interaction of black pepper with Phytophthora capsici. International Journal of Molecular Sciences 22(21): e11433. https://doi.org/10.3390/ijms222111433

Keita K, Darkoh C, Okafor F (2022) Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens. SN Applied Sciences 4(8): e209. https://doi.org/10.1007/s42452-022-05084-y

Kim HJ, Chen F, Wang X, Rajapakse NC (2005) Effect of Chitosan on the Biological Properties of Sweet Basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry 53(9): 3696-3701 https://doi.org/10.1021/jf0480804

Klessig DF, Choi HW, Dempsey DA (2018) Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions 31(9): 871-888. https://doi.org/10.1094/mpmi-03-18-0067-cr

Lárez VC, Rojas PM, Chirinos A, Rojas AL (2019) Nuevos retos en agricultura para los biopolímeros de quitina y quitosano. Parte 1: Efectos beneficiosos para los cultivos. Revista Iberoamericana de Polímeros y Materiales 20(3): 118-136.

Li ZG (2016) Methylglyoxal and glyoxalase system in plants: old players, New Concepts. Botanical Review 82(2): 183-203. https://doi.org/10.1007/s12229-016-9167-9

Little TM, Hills FJ (2008) Métodos estadísticos para la investigación en la agricultura. 2da edición. Editorial Trillas. México. 270p.

López-Moya F, Suarez-Fernández M, López-Llorca LV (2019) Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences 20(2): e332. https://doi.org/10.3390/ijms20020332

López-Velázquez JC, García-Morales S, López-Sánchez, GP, Montero-Cortés MI, Uc-Várguez A, Qui-Zapata JA (2023) High-density chitosan induces a biochemical and molecular response in Coffea arabica during infection with Hemileia vastatrix. International Journal of Molecular Sciences 24(22): e16165. https://doi.org/10.3390/ijms242216165

Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y (2017) Bioactive compounds from medicinal plants: Focus on Piper species. South African Journal of Botany 112: 54-69. https://doi.org/10.1016/j.sajb.2017.05.007

Pliankong P, Suksa P, Wannakrairoj S (2018) Chitosan elicitation for enhancing of vincristina and vinblastina accumulation in cell culture of Catharanthus roseus (L.) G. Don. Journal of Agricultural Science 10(12): 287-293.

Rabie E, Serem JC, Oberholzer HM, Gaspar ARM, Bester MJ (2016) How methylglyoxal kills bacteria: An ultrastructural study. Ultrastructural Pathology 40(2): 107-111. https://doi.org/10.3109/01913123.2016.1154914

Rahman A, Sultana V, Ara J, Ehteshamul-Haque S (2016) Induction of systemic resistance in cotton by the neem cake and Pseudomonas aeruginosa under salinity stress and Macrophomina phaseolina infection. Pakistan Journal of Botany 48 (4): 1681-1689.

Rodríguez PNC, Zarate SAG, Sánchez LLC (2017) Actividad antimicrobiana de cuatro variedades de plantas frente a patógenos de importancia clínica en Colombia. NOVA 15(27): 119-129. https://doi.org/10.22490/24629448.1963

Roman H, Niculescu AG, Lazăr V, Mitache MM (2023) Antibacterial efficiency of Tanacetum vulgare essential oil against ESKAPE pathogens and synergisms with antibiotics. Antibiotics 12(11): e1635. https://doi.org/10.3390/antibiotics12111635

Salehi, B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Fidalgo LM, Martorell M, Setzer WN (2019) Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 24(7): e1364. https://doi.org/10.3390/molecules24071364

Salimgandomi S, Shabrangi A (2016) The effect of chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L. Journal of Pharmaceutical and Health Sciences 4(2): 135-142. https://doi.org/10.1016/j.rhisph.2022.100651

Sarathambal C, Jeevalatha A, Sivaranjani R, Biju CN, Charles S, Srinivasan V, George P, Perter B, Radhika R (2023) Arbuscular mycorrhizal colonization alters biochemical, molecular defense responses and root exudate composition against Phytophthora capsici infection in black pepper. Rhizosphere 25: e100651. https://doi.org/10.1016/j.rhisph.2022.100651

Shamsudin NF, Ahmed QU, Mahmood S, Ali SSA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA (2022) Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 27(4): e1149. https://doi.org/10.3390/molecules27041149

Sharma A, Kohli SK, Khanna K, Ramakrishnan M, Kumar V, Bhardwaj, Brestic M, Landi M, Zheng B. (2023). Salicylic acid: A phenolic molecule with multiple roles in salt-stressed plants. Journal of Plant Growth Regulation 42(8): 4581-4605. https://doi.org/10.1007/s00344-022-10902-z

Tiwari RK, Udayabhanu M, Chanda S (2016) Quantitative analysis of secondary metabolites in aqueous extract of Clerodendrum serratum. International Research Journal of Pharmacy 7: 61-65. https://doi.org/10.7897/2230- 8407.0712148

Trindade R, Almeida L, Xavier L, Andrade EH, Maia JG, Mello A, Setzer WN, Ramos A, da-Silva, JKR (2021) Influence on secondary metabolism of Piper nigrum L. by co-inoculation with arbuscular mycorrhizal fungi and Fusarium solani f. sp. piperis. Microorganisms 9(3): e484. https://doi.org/10.3390/microorganisms9030484

Wong KY, Vikram P, Chiruvella KK, Mohammed A (2015) Phytochemical screening and antimicrobial potentials of Borreria sp (Rubiaceae). Journal of King Saud University - Science 27(4): 302–311. https://doi.org/10.1016/j.jksus.2014.12.001

Zeier J (2021) Metabolic regulation of systemic acquired resistance. Current Opinion in Plant Biology 62: e102050. https://doi.org/10.1016/j.pbi.2021.102050

Downloads

Published

2025-08-27

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Lozada-García , J. A., Hernández-Suárez, R. ., Barrientos-Salcedo, C., de la Cruz-Elizondo, Y. ., Vázquez-Martínez, J. ., & Carmona-Hernández, O. (2025). Induction of bioactive metabolites in Piper psilorhachis C.DC. (Piperaceae) and antibacterial activity by chitosan. Ecosistemas Y Recursos Agropecuarios, 12(2). https://doi.org/10.19136/era.a12n2.4542

Most read articles by the same author(s)