In situ degradation of sunflower (Helianthus annuus) seed and oil

Authors

  • DR. NICOLAS TORRES SALADO Universidad Autónoma de Guerrero image/svg+xml
    • DR. PAULINO SANCHEZ SANTILLAN Universidad Autónoma de Guerrero image/svg+xml
      • DR. MARCO ANTONIO AYALA MONTER Universidad Autónoma de Guerrero image/svg+xml
        • DR. VICENTE HOMERO GONZALEZ ALVAREZ Universidad Autónoma de Guerrero
          • DR. RICARDO MARTINEZ MARTINEZ University of Guadalajara image/svg+xml
            • Jerónimo Herrera-Pérez Universidad Autónoma de Guerrero image/svg+xml

              DOI:

              https://doi.org/10.19136/era.a12n3.4082

              Keywords:

              fermentation, feeding, sheep, fats, bacteria

              Abstract

              The aim of this study was to evaluate the effect of including sunflower oil (2 and 4%) and whole sunflower seed (18%) on the in-situ degradability of dry matter (ISDMD), neutral detergent fiber (ISNDFD), acid detergent fiber (ISADFD), and ruminal pH in sheep. A repeated 4 × 4 Latin square design was used, involving four rumen-cannulated male sheep (60 ± 3 kg BW). Data were analyzed using the GLM procedure in SAS, and treatment means were compared with Tukey’s test (p ≤ 0.05). No significant differences in ISDMD were observed among treatments during the first 48 h of incubation; however, at 72 h, the diet containing 4% sunflower oil (T4) showed the highest degradability (p < 0.05). The ISNDFD was significantly higher (p < 0.05) with the inclusion of 4% oil (T4), with increases of up to 36.5% compared to the control. In contrast, ISADFD was lower (p < 0.05) in the diet containing sunflower seed (T2) throughout the evaluation period. Ruminal pH remained within physiological ranges and did not differ among treatments or incubation times (p > 0.05). In conclusion, both sunflower seed and oil modified the degradation of fibrous components, with the 4% oil inclusion emerging as the most efficient strategy to enhance digestibility without compromising ruminal stability.

              Downloads

              Download data is not yet available.

              References

              AOAC (2005) Official Methods of Analysis of AOAC InternationaL. 2005. 18td Ed., AOAC International, Gaithersburg, MD, USA, Official Method. 125p.

              Beauchemin KA, McGinn SM, Benchaar C, Holtshausen L (2009) Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science 92(5): 2118-2127. https://doi.org10.3168/jds.2008-1903

              Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, Camillis C, Bernoux M, Robinson T, Kebreab E (2022) Revisión por invitación: Opciones actuales de mitigación del metano entérico. Journal of Dairy Science 105: 1-30. https://doi.org/10.3168/jds.2022-22091

              Cañaveral-Martínez UR, Sánchez-Santillán P, Torres-Salado N, Hernández-Sánchez D, Herrera-Pérez J, and Ayala-Monter MA (2023) Effect of waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent digestibility, and ruminal characteristics in calf diets. Veterinary World 16(3): 421-430.

              Cao Y, Wang D, Wang L, Wei X, Li X, Cai C, Lei X, Yao J (2021) Physically effective neutral detergent fiber improves chewing activity, rumen fermentation, plasma metabolites, and milk production in lactating dairy cows fed a high-concentrate diet. Journal Dairy Science 104(5): 5631-5642. https://doi.org/10.3168/jds.2020-19012

              Crosby-Galván MM, Torres-Salado N, Sánchez-Santillán P, Salinas-Ríos T, Ayala Monter MA, Herrera-Pérez J (2022) Effect of sunflower oil (Helianthus annuus) on in vitro ruminal fermentation and emission of gases. Agro Productividad. https://doi. org/10.32854/agrop.v15i7.2327

              De-Azevedo EB, Savian JV, do Amaral GA, de David DB, Gere JI, Kohmann MM, Bremm C, Jochims F, Zubieta AS, Gonda HL, Bayer C, de Faccio Carvalho PC (2021) Feed intake, methane yield, and efficiency of utilization of energy and nitrogen by sheep fed tropical grasses. Tropical Animal Health and Production 53(5): 452. https://doi.org/10.1007/s11250-021-02928-4

              De-Tonissi RH, De Goes B, De Souza KA, Patussi RA, Cornelio TDC, De Oliveira ER, Brabes KDC (2010) In situ ruminal degradability of crambe, sunflower and soybean seeds and their by-products in sheep feeding, Acta Scietiarium Animal Sciences 32(3): 271-277. https://doi:10.4025/actascianimsci.v32i3.7913

              DeFeo ME, Shampoe KV, Carvalho PHV, Silva FAS, Felix TL (2020) In vitro and in situ techniques yield different estimates of ruminal disappearance of barley Translational Animal Science 4(1): 141-148. https://doi.org/10.1093/tas/txz170

              FEDNA (2019) Composición y valor nutritivo de alimentos para la fabricación de piensos compuestos Fundación Española para el Desarrollo de la Nutrición Animal. Cuarta edi. 604p.

              García Balbuena A, Torres-Salado N, Herrera-Pérez J, Maldonado-Peralta MD los Angeles, Mayren-Mendoza FDJ, Mendoza-Medel G (2022) Producción de gas in vitro y respuesta productive de becerras alimentadas con una dieta integral que contiene pasta de ajonjoli (Sesamun indicum) como fuente de proteica Tropical and Subtropical Agroecosystems 25. https://doi.org/10.56369/tsaes.4155

              Harmon DL, Swanson KC (2020) Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants Animal 14(S1): s17-s28. https://doi.org/10.1017/s1751731119003136

              Herrera-Pérez J, Crosby-Galván MM, Bárcena-Gama JR, Hernández-Sánchez D, Hernández-Mendo O, Torres-Salado N, Cruz-Monterrosa RG (2018) Fermentación ruminal y emisión de gases in vitro de dietas con diferente inclusión de semilla de girasol (Helianthus annuus). Agrociencia 52(8): 1071-1080.

              Hristov AN, Melgar A, Wasson D, Arndt C (2022) Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. Journal Dairy Science 105(10): 8543-8557. https://doi.org/10.3168/jds.2021-21398

              Ibrahim NA, Alimon AR, Yaakub H, Samsudin AA, Candyrine SCL, Wan Mohamed WN, Md Noh A, Fuat MA, Mookiah S (2021) Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Tropical Animal Health and Production 53(4): 422. https://doi.org/10.1007/s11250-021-02863-4

              Ítavo LCV, Soares CM, Ítavo CCBF, Días AM, Petit HV, Leal ES, De Souza ADV (2015) Calorimetry, chemical composition and in vitro digestibility of oilseeds, Food Chemistry 185: 219-225. https://doi 10.1016/j.foodchem.2015.03.007

              Krizsan SJ, Jančík F, Ramin M, Huhtanen P (2013) Comparison of some aspects of the in situ and in vitro methods in evaluation of neutral detergent fiber digestion. Journal Animal Science 91(2): 838-847. https://doi.org/10.2527/jas.2012-5343

              Newbold CJ, Ramos-Morales E (2020) Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal 14(S1): s78-s86. https://doi.org/10.1017/s1751731119003252

              NRC (2007) Requirements of small ruminants, sheep, goats, cervids and new world Camelids. National Research Council Nutriment. The National Academics Press. Washington, D.C. USA. 362p.

              Paula EM, da Silva LG, Brandao VLN, Dai X, Faciola AP (2019) Feeding canola, camelina, and carinata meals to ruminants. Animals, 9(10), 704. https://doi.org/10.3390/ani9100704

              Pitta, D. W., Indugu, N., Vecchiarelli, B., Rico, D. E., Harvatine, K. J (2018) Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. Journal of dairy science 101(1): 295-309. https://doi.org/10.3168/jds.2016-12514

              Rahmadani M, Susanto I, Prasetya RDD, Kondo M, Nahrowi N, Jayanegara A (2023) Modification of dietary rumen degradable starch content by chemical processing of feed ingredients: A meta-analysis. Animal Science Journal 94(1): e13834. https://doi.org/10.1111/asj.13834

              Rakita S, Kokić B, Manoni M, Mazzoleni S, Lin P, Luciano A, Ottoboni M, Cheli F, Pinotti L (2023) Cold-pressed oilseed cakes as alternative and sustainable feed ingredients: A review. Foods 12(3). https://doi.org/10.3390/foods12030432

              Renna M, Coppa M, Lussiana C, Le Morvan A, Gasco L, Maxin G (2022) Full-fat insect meals in ruminant nutrition: in vitro rumen fermentation characteristics and lipid biohydrogenation. Journal Animal Science Biotechnol 13(1): 138. https://doi.org/10.1186/s40104-022-00792-2

              Riaz R, Ahmed I, Sizmaz O, Ahsan U (2022) Use of Camelina sativa and by-products in diets for dairy cows: A review. Animals 12(9). https://doi.org/10.3390/ani12091082

              Rotger A, Ferret A, Calsamiglia S. Manteca X (2006) In situ degradability of seven plant protein supplements in heifers fed high concentrate diets with different forage to concentrate ratio. Animal Feed Science and Technology 125(1-2): 73-87. https://doi.org/10.1016/j.anifeedsci.2005.05.017

              Sainz-Ramírez A, Velarde-Guillén J, Estrada-Flores JG, Arriaga-Jordán CM (2021) Productive, economic, and environmental effects of sunflower (Helianthus annuus) silage for dairy cows in small-scale systems in central Mexico. Tropical Animal Health and Production 53(2): 256. https://doi.org/10.1007/s11250-021-02708-0

              Salami SA, Valenti B, Luciano G, Lanza M, Umezurike-Amahah NM, Kerry JP, O'Grady MN, Newbold CJ, Priolo A (2021) Dietary cardoon meal modulates rumen biohydrogenation and bacterial community in lambs. Scientific Reports 11(1): 16180. https://doi.org/10.1038/s41598-021-95691-3

              Santos-Silva J, Francisco A, Portugal AP, Paulos K, Dentinho MT, Almeida JM, Regedor L, Fialho L, Cachucho L, Jerónimo E, Alves SP, Bessa RJB (2022) Effects of partial substitution of grain by agroindustrial byproducts and sunflower seed supplementation in beef haylage-based finisher diets on growth, in vitro methane production and carcass and meat quality. Meat Science 188: 108782. https://doi.org/10.1016/j.meatsci.2022.108782

              SAS (2011) Statistical Analysis System, SAS, User’s Guide: SAS Inst., Cary, NC. pp: 3154-3339.

              Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

              Vieyra-Alberto R, Arriaga-Jordán CM, Domínguez-Vara IA, Bórquez-Gastelum JL, Morales-Almaráz E (201) Efecto del aceite de soya sobre la concentración de los ácidos grasos vaccenico y ruménico en leche de vacas en pastoreo. Agrociencia 51(3): 299-313.

              Zhang Z, Wang L, Li Q, Li F, Ma Z, Li F, Wang Z., Chen L, Yang, X, Wang X, Yang G (2024) Effects of dietary forage neutral detergent fiber and rumen degradable starch ratios on chewing activity, ruminal fermentation, ruminal microbes and nutrient digestibility of Hu sheep fed a pelleted total mixed ration. Journal Anim Science 102. https://doi.org/10.1093/jas/skae100

              Downloads

              Published

              2025-10-31

              Issue

              Section

              SCIENTIFIC ARTICLE

              How to Cite

              TORRES-SALADO, N., SANCHEZ-SANTILLAN, P., AYALA MONTER, M. A., GONZALEZ ALVAREZ, V. H., MARTINEZ MARTINEZ, R., & Herrera-Pérez, J. (2025). In situ degradation of sunflower (Helianthus annuus) seed and oil. Ecosistemas Y Recursos Agropecuarios, 12(3). https://doi.org/10.19136/era.a12n3.4082

              Most read articles by the same author(s)