Extracts of Mexican mistletoe on the development and recovery of Phytophthora capsici
DOI:
https://doi.org/10.19136/era.a13n1.4479Keywords:
Inhibition, Mesquite, natural products, oomycete, Psittacanthus calyculatusAbstract
Phytophthora capsici affects a wide range of food crops; the use of natural products for its control is crucial to reducing the use of agrochemicals. The activity of four concentrations of extracts from the leaves and flowers of Mexican mistletoe (Psittacanthus calyculatus) on the development and recovery of the oomycete was evaluated during and after treatment. At the highest concentration (33.3%), the mistletoe leaf extracts inhibited pathogen growth by 50.6% and the flower extracts by 54.4%. They also caused decreased sporangium formation, alterations in colonial morphology, sparse mycelial development, hyphal modification and deformation, reduced pigment production in the culture medium, and loss of zoospore viability. However, the phytopathogen recovered its growth in 87% to 97% of cases, demonstrating the adaptability of P. capsici and the ability of the extracts to delay its development.
Downloads
References
Abat JK, Kumar S, Mohanty A (2017) Ethnomedicinal, phytochemical and ethnopharmacological aspects of four medicinal plants of malvaceae used in Indian traditional medicines: A review. Medicines 4(4): 75. https://doi.org/10.3390/medicines4040075.
Aguilar-Venegas M, Quintana-Rodríguez E. Aguilar-Hernández V. López-García M. Conejo-Dávila E. Brito-Argáez L, Loyola-Vargas VM, Vega-Arreguín J, Orona-Tamayo D (2023) Protein profiling of Psittacanthus calyculatus during mesquite infection. Plants 12(3): 464. https://doi.org/10.3390/plants12030464.
Azpeitia F, Lara C (2006) Reproductive biology and pollination of the parasitic plant Psittacanthus calyculatus (Loranthaceae) in central México. The Journal of the Torrey Botanical Society 133(3): 429–438. http://www.jstor.org/stable/20063856.
Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228(4704): 1154–1160. https://doi.org/10.1126/science.3890182.
Barupal T, Meena M, Sharma K (2019) Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC–MS analysis. Biotechnology Reports 23. https://doi.org/10.1016/j.btre.2019.e00335.
Blanc PJ, Loret MO, Goma GA (2001) Control of the production of metabolites by Monascus in submerged culture. Tu04-2. 11th World Congress of Food Science and Technology. Seoul, Korea.
Carvalho JC, Pandey A, Babitha, S, Soccol CR (2003) Production of Monascus biopigments: An overview. Agro food Industry Hi-Tech. 14(6): 37–42.
Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T (2017) Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. The Journal of Steroid Biochemistry and Molecular Biology 171: 80–93. https://doi.org/10.1016/j.jsbmb.2017.02.020.
Cervantes-Ortega MJ, López-Ramírez V, Alvarez-Adame MR, Quintana-Rodríguez E (2015) Actividad antimicrobiana de extractos de hoja de muérdago Pssithacantus calyculatus. Jóvenes En La Ciencia Revista de Divulgación Científica 1(3): 25–28. Recuperado a partir de https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/714
Cho YJ, Park JP, Hwang HJ, Kim SW, Choi JW, Yun JW (2002) Production of red pigment by submerged culture of Paecilomyces sinclairii. Letters of Applied Microbiology 35(3): 195–202. doi: 10.1046/j.1472-765x.2002.01168.x.
Erwin DC, Ribeiro OK (1996). Phytophthora diseases worldwide. American Phytopathological Society, St. Paul, MN, USA.
Flores-Vaillant DI, González-García M, Ramírez-Ochoa R (2013) Propuesta de medio de cultivo para el estudio de Phytophthora Nicotianae Breda de Haan. Revista Ciencia y Tecnología 15(19): 24–27.
Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK (2008) Characterization of Phytophthora capsici causing foliar and pod blight of snap bean in Michigan. Plant Disease 92(2): 201–209. https://doi.org/10.1016/j.foodchem.2006.10.061.
Ghannoum MA, Rice LB (1999) Antifungal Agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews 12(4): 501–517. https://doi.org/10.1128/CMR.12.4.501.
Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan, H (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry 103(4): 1449–1456.
Harris-Valle C, Bonilla-Pioquinto E, Palafox-Rodríguez M (2020) Antagonismo de microorganismos nativos sobre Phytophthora infestans (Mont.) de Bary aislada de Solanum tuberosum L. CIBA Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias 9(17): 23–43. https://doi.org/10.23913/ciba.v9i17.96.
Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Disease 88(12): 1292–1303. https://doi.org/10.1094/PDIS.2004.88.12.1292.
Hurtado-Gonzáles O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R, Lamour K, (2008) Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology, 98(6): 688–694. https://doi.org/10.1094/PHYTO-98-6-0688
Hwang BK, Kim CH (1995) Phytophthora blight of pepper and its control in Korea. Plant Disease 79(3): 221–227. DOI: 10.1094/PD-79-0221.
Islam MT, von Tiedemann A, Laatsch H (2011) Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores. Molecular Plant-Microbe Interactions 24(8): 938–947. https://doi.org/10.1094/MPMI-12-10-0280.
Jacobo-Salcedo MR, Alonso-Castro BA, Salazar-Olivo LA, Carranza-Alvarez, C, González-Espíndola LA, Domínguez F, Maciel-Torres PS, García-Lujan C, González-Martínez M, Gómez-Sánchez M, Estrada-Castillón E, Zapata-Bustos R, Medellin-Milán P, García-Carrancá A (2011) Antimicrobial and cytotoxic effects of Mexican medicinal plants. Natural Product Comunication 6(12): 1925–1928. PMID: 22312741.
Jáquez-Matas SV, Pérez-Santiago G, Márquez-Linares MA, Pérez-Verdín G (2022) Impactos económicos y ambientales de los plaguicidas en cultivos de maíz, alfalfa y nogal en Durango, México. Revista Internacional de Contaminación Ambiental. https://doi.org/10.20937/RICA.54169.
Juárez-Segovia KG, Díaz-Darcía EJ, Méndez-López MD, Pina-Canseco MS, Pérez-Santiago AD, Sánchez-Medina MA (2019). Efecto de extractos crudos de ajo (Allium sativum) sobre el desarrollo in vitro de Aspergillus parasiticus y Aspergillus niger. Polibotánica. https://doi.org/10.18387/polibotanica.47.8.
Kang K, Fong WP, Tsang PW (2010) Novel antifungal activity of purpurin against Candida species in vitro. Medical Mycology 48(7): 904–911. https://doi.org/10.3109/13693781003739351.
Karthika S, Varghese S, Jisha MS (2020) Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. Biotech 10(7): 320. https://doi.org/10.1007/s13205-020-02306-1.
Kim HS, Sang MK, Jung HW, Jeun YC, Myung IS, Kim K D (2012) Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Protection 32: 129–137. https://doi.org/10.1016/j.cropro.2011.10.018.
Kuijt J (2009) Monograph of Psittacanthus (Loranthaceae) Systematic Botany Monographs 86: 1–361. http://www.jstor.org/stable/25592351.
Leonian LH, (1922) Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12: 401–408.
Lagrouh F, Dakka N, Bakri Y (2017) The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de Mycologie Médicale 27(3): 303–311. https://doi.org/10.1016/J.MYCMED.2017.04.008.
Lamour KH, Hausbeck M K (2000) Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90(4): 396–400. doi: 10.1094/PHYTO.2000.90.4.396.
Lamour KH, Hausbeck MK (2001) The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology 91(6): 553–557. doi: 10.1094/PHYTO.2001.91.6.553.
Lamour KH, Stam R, Jupe J, Huitema E (2012) The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology 13(4): 329–337. https://doi.org/10.1111/j.1364-3703.2011.00754.x.
Lamour KH, Kamoun S (2009) Oomycete genetics and genomics: Diversity, interactions, and research tools. Blackwell Publishing, Hoboken, NJ, U.S.A.
Lara C, Xicohténcatl-Lara L, Ornelas JF (2021) Differential reproductive responses to contrasting host species and localities in Psittacanthus calyculatus (Loranthaceae) mistletoes. Plant Biology 23(4): 603–611. https://doi.org/10.1111/plb.13266.
Li Q, Ai G, Shen D, Zou F, Wang J, Bai T, Chen Y, Li S, Zhang M, Jing M, Dou D (2019). A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis thaliana. Molecular Plant 12(4): 565–581. doi: 10.1016/j.molp.2019.01.018.
Liang Q, Gao F, Jian J, Yang J, Hao X, Huang L (2024) Design, synthesis and antifungal activity of nootkatone derivatives containing acylhydrazone and oxime ester. Chemistry & Biodiversity 21(5). https://doi.org/10.1002/cbdv.202400355.
Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, He LJ, Yan L, Xu GT, An MM, Jiang YY (2014) Synergistic antifungal effect of glabridin and fluconazole. PLoS ONE 9(7) e103442. https://doi.org/10.1371/journal.pone.0103442.
Matheron ME, Porchas M (2000) Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation and zoospore cyst germination of three Phytophthora spp. Plant Disease 84(4): 454–458. https://doi: 10.1094/PDIS.2000.84.4.454.
Meitz JC, Linde CC, Thompson A, Langenhoven S, McLeod A (2010) Phytophthora capsici on vegetable hosts in South Africa: Distribution, host range and genetic diversity. Australian Plant Pathology 39: 431–439. https://doi.org/10.1071/AP09075.
Mohotti S, Rajendran S, Muhammad T, Strömstedt AA, Adhikari A, Burman R, de Silva ED, Göransson U, Hettiarachchi CM, Gunasekera S (2020) Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. Journal of ethnopharmacology 246: 112158. https://doi.org/10.1016/j.jep.2019.112158.
Mohsan M, Ali1 S, Umar-Shahbaz M, Saeed S, Burhan M (2017) In vitro efficacy of different growth media and crude plant extracts against mycelia growth of Phytophthora capsici. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/jabb.2017.50407.
Moustapha B, Gutiérrez-Avella DM, Fuentes-Ordaz R, Castañeda Moreno R, Martínez M (2011) Chemical constituents of the mexican mistletoe (Psittacanthus calyculatus). Molecules 16(11): 9397–9403. https://doi.org/10.3390/molecules16119397.
Nguyen XH, Naing KW, Lee YS, Tindwa H, Lee GH, Jeong BK, Ro HM, Kim SJ, Jung WJ, Kim KY (2012) Biocontrol potential of Streptomyces griseus H7602 against root rot disease (Phytophthora capsici) in pepper. Plant Pathology Jornal 28(3): 282–289. http://dx.doi.org/10.5423/PPJ.OA.03.2012.0040.
Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59: 538–558. https://doi.org/10.1002/tax.592019.
Ontiveros-Rodríguez JC, Rojas-Rojas FU, Alonso-Castro AJ, Salazar-Gómez A (2023) American mistletoes as a promising source of bioactive compounds. In Studies in Natural Products Chemistry 78: 237–253. https://doi.org/10.1016/B978-0-323-91253-2.00020-0.
Park HJ, Lee JY, Moon SS, Hwang BK (2003) Isolation and anti-oomycete activity of nyasol from Anemarrhena asphodeloides rhizomes. Phytochemistry 64(5): 997–1001. https://doi.org/10.1016/S0031-9422(03)00462-X.
Peralta MA, da Silva MA, Ortega MG, Cabrera JL, Paraje MG (2015) Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 22(11): 975–980. https://doi.org/10.1016/j.phymed.2015.07.003.
Perez C, Tiraboschi IN, Ortega MG, Agnese AM, Cabrera JL (2003) Further Antimicrobial Studies of 2’4’-dihidroxy-5’-(1-dimethylallyl)-6-prenylpinocembrin from Dalea elegans. Pharmaceutical Biology 41(3): 171–174. https://doi.org/10.1076/phbi.41.3.171.15090.
Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology 58(11): 1454–1462. https://doi.org/10.1099/jmm.0.010538-0.
Pizzolitto RP, Barberis CL, Dambolena JS, Herrera JM, Zunino MP, Magnoli CE, Rubinstein HR, Zygadlo JA, Dalcero AM (2015) Inhibitory effect of natural phenolic compounds on Aspergillus parasiticus growth. Journal of Chemistry 2015. https://doi.org/10.1155/2015/547925.
Pons-Hernández JL, Guerrero-Aguilar BZ, Martin González-Chavira M, González-Pérez E, Villalobos-Reyes S, Muñoz-Sánchez CI (2020) Variabilidad fenotípica de aislados de Phytophthora capsici en Guanajuato. Revista Mexicana Ciencias Agrícolas 11(8): 1891–1901. https://doi.org/https://doi.org/10.29312/remexca.v11i8.2618.
Qi RD, Wang T, Zhao W, Li P, Ding JC, Gao ZM (2012) Activity of ten fungicides against Phytophthora capsici isolates resistant to metalaxyl. Journal Phytopathology 160: 717–722. https://doi.org/10.1111/jph.12009.
Quintana-Rodríguez E, Ramírez-Rodríguez AG, Ramírez-Chávez E, Molina-Torres J, Camacho-Coronel X, Esparza-Claudio J, Heil, M, Orona-Tamayo D (2018) Biochemical traits in the flower lifetime of a mexican mistletoe parasitizing mesquite biomass. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01031.
Ramírez PG, Ramírez DG, Mejía EZ, Ocampo SA, Díaz CN, Rojas Martínez RI (2020) Extracts of Stevia rebaudiana against Fusarium oxysporum associated with tomato cultivation. Scientia Horticulturae 259. https://doi.org/10.1016/j.scienta.2019.108683.
Ruiz RE, Ojito-Ramos K, Castañeda Bauta R, Portal O (2020) Actividad antifúngica in vitro de extractos de plantas frente a hongos patógenos de tomate y frijol común. Centro agrícola 47: 49–53. http://cagricola.uclv.edu.cu.
Russel PE (2004) Sensitivity baselines in fungicide resistance research and management. FRAC Monograph FRAC Brussels Belgium. No.3.
Sang-Choon L, Sang-Heon K, Hoffmeister R A, Moon-Young Y, Sung-Kun K (2019) Novel peptide-based inhibitors for microtubule polymerization in Phytophthora capsici. International Journal of Molecular Sciences 20(11): 2641. https://doi.org/10.3390/ijms20112641.
Saura-Calixto F, Serrano J, Goñi I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101(2): 492–501. https://doi.org/10.1016/j.foodchem.2006.02.006.
Sevillano-Serrano J, Larsen J, Rojas-Rojas FU, Vega-Arreguín JC (2024) Increasing virulence and decreasing fungicide sensitivity in Phytophthora capsici after continuous metalaxyl-chlorothalonil exposure. Journal of Plant Pathology 106: 1583–1590. https://doi.org/10.1007/s42161-024-01713-0.
Solache-Huacuz E, Rodríguez-Alvarado G, Naranjo-Bravo AE, Celaya MD, Fernádez-Pavia SP (2010) Técnicas de aislamiento de Phytophthora contaminados con bacterias. Revista de La DES Ciencias Biológico Agropecuarias 12(1): 61–64. https://www.researchgate.net/publication/255950579.
Tian J, Ban X, Zeng H, Huang B, He J, Wang Y (2011) In vitro and in vivo activity of essential oil from dill (Anethum graveolens L.) against fungal spoilage of cherry tomatoes. Food Control 22(12): 1992–1999. https://doi.org/10.1016/j.foodcont.2011.05.018.
Walker G M, White NA (2005) Introduction to Fungal Physiology. In Fungi: 1–34. https://doi.org/10.1002/0470015330.ch1.
Xoca-Orozco LA, Cortez-Fonseca K, Luna-López C, Hernández-Mendoza G, Flores-Sierra JJ, Chacón-López MA, Aguilera-Aguirre S (2022) Inhibición in vitro de hongos fitopatógenos utilizando extractos de muérdago mexicano (Psittacanthus calyculatus). Ecosistemas y Recursos Agropecuarios 9(3). https://doi.org/10.19136/era.a9n3.3431.
Yang X, Jiang J, Zhang C, Li Y (2019) Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Brazilian Journal of Medical and Biological Research 52(12). https://doi.org/10.1590/1414-431x20198934.
Youyou W, Congying Z, Lufang W, Le W, Wenbin G, Jizhi J, Yanqing W (2019) Inhibitory effect of Bacillus subtilis WL-2 and its IturinA lipopeptides against Phytophthora infestans. BioRxiv. https://doi.org/10.1101/751131.
Zhao WS, Han XY, Wang WQ, Zhang XF (2010) Advance on fungicides resistance of Phytophthora capsici. Agrochemicals 49(2): 86–89.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ecosistemas y Recursos Agropecuarios

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aviso de copyright
Los autores que se envían a esta revista aceptan los siguientes términos:
una. Los autores conservan los derechos de autor y garantizan a la revista el derecho a ser la primera publicación del trabajo con una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
B. Los autores pueden establecer acuerdos complementarios separados para la distribución no exclusiva de la versión del trabajo publicado en la revista (por ejemplo, en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
C. Se permite y se anima a los autores a difundir su trabajo electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede conducir a intercambios productivos, así como a una cita más temprana y más extensa del trabajo publicado. (Consulte El efecto del acceso abierto).