Differentiation of apomictic and sexual genotypes of Brachiaria spp., using molecular markers

Autores/as

  • Jaime Pblete-Vargas Programa de Semillas, Colegio de Postgraduados Campus Montecillo. Km 36.5 Carretera México- Texcoco, CP. 56230, Montecillo, Texcoco, Estado de México, México.
  • Ernestina Valadez-Moctezuma Universidad Autónoma Chapingo
  • Gabino García-de los Santos Programa de Semillas, Colegio de Postgraduados Campus Montecillo. Km 36.5 Carretera México- Texcoco, CP. 56230, Montecillo, Texcoco, Estado de México, México.
  • Carlos Martínez-Flores Programa Global de Maíz. Centro Internacional de Mejoramiento de Maíz y Trigo. Carretera México-Veracruz. Km. 45, Colonia El Batán, CP. 56237, Texcoco, Estado de México, México.
  • Armando Peralta-Martínez Agroproductos de Iguala, S.A. de C.V. Hidalgo No. 23, Col. Centro, CP. 40400, Iguala, Guerrero, México.

DOI:

https://doi.org/10.19136/era.a5n13.1180

Palabras clave:

AFLPs, CAPS, DNA, forraje, polimorfismo.

Resumen

Some species of Brachiaria are cultivated in the tropics because of their high productivity and drought resistance; their apomictic hybrids are of interest because of the almost null segregation and xation of the hybrid vigor in seeds. In this research, Amplied Fragment Length Polymorphism (AFLP) and Cleaved Amplied Polymorphic Sequence (CAPS) markers were used to dierentiate apomictic tetraploid and sexual diploid Brachiaria parents and their progeny. Polymorphism detected with AFLP was 91.3% and with CAPS 79.7%. Phenograms dierentiated each genotype and the clustering of parents and their progeny was by their degree of genetic relatedness. AFLP did not separate the apomictic genotypes from the sexual ones, but CAPS markers did so through the C15-8 marker. Some apomictic genotypes of the progeny inherited it from their B. ruziziensis sexual mother, which may be related to some segregating character of the parental line.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Ernestina Valadez-Moctezuma, Universidad Autónoma Chapingo
    Responsable del Laboratorio de Biología Molecular del Departamento de Fitotecnia de la Universidad Autonóma Chapingo.

Referencias

Azofeita-Delgado A (2006) Uso de marcadores moleculares en plantas; aplicación en frutales del trópico. Agronomía Mesoamericana 17: 221-242.

Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. The Plant Cell 16: S228-S245.

Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proceedings of the National Academy of Sciences of the United States of America 103: 18650-18655.

Cavagnaro PF, Cavagnaro JB, Lemes JL, Masuell RW, Passera CB (2006) Genetic diversity among varieties of the native forage grass Trichloris crinite based on AFLP markers, morphological characters, and quantitative agronomic traits. Genome 49: 906-918.

CIAT (2002) Annual Report: Part 1: Grass and legume genotypes with high forage attributes. CIAT. Cali, Colombia. 23p.

De la Cruz-Llanas JJ, Vera-Graziano J, López-Collado J, Pinto MV, Garza-García R (2005) Una técnica simple para el desarrollo de ninfas de Aeneolamia postica (Homoptera: Cercopidae). Folia Entomológica Mexicana 44: 91-93.

Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparathion: Version II. Plant Molecular Biology Reporter 1: 19-21.

Do Valle CB, Miles JW (2001) Breeding of apomictic species. In: CYMMYT (Ed.). The owering of apomixis: from mechanisms to genetic engineering. CYMMYT/IRD. Mexico. pp: 137-152.

Dore JC, Ojasoo T (2001) How to analyze publication time trends by correspondence factor analysis: Analysis of publications by 48 countries in 18 disciplines over 12 years. Journal of the Association for Information Science and Technology 52: 763-769.

FAO (2009) El estado mundial de la agricultura y la alimentación. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia. 184p.

Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends in Genetics 17: 597-604.

Hand ML, Koltunow AM (2014) The genetic control of apomixis: Asexual seed formation. Genetics 197: 441-450.

Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiology 108: 1345-1352.

Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype- speci c PCR-based markers. The Plant Journal 4: 403-410.

Labombarda P, Busti A, Caceres MA, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45: 513-519.

Lascano CE (2002) Caracterización de las pasturas para maximizar producción animal. Archivos Latinoameri- canos de Producción Animal 10: 126-132.

Miles JW, Do Valle CB, Rao IM, Euclides VP (2004) Brachiaria grasses. In: Sollenberger LE, Moser LE, Burson BL (eds) Warm-season (C4) grasses. Agronomy monograph 45, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. Madison, WI, USA. pp: 745-783.

Möhring S, Horstmann V, Esch E (2005) Development of a molecular CAPS marker for the self-incompatibility locus in Brassica napus and identi cation of di erent S alleles. Plant Breeding 124: 105-110.

Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences United States of America 76: 5269-5273.

Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid owering plant Erigeron annuus. Genetics 155: 379-390.

Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proceedings of the National Academy of Sciences of the United States of America 95: 5127-5132.

Rao IM, Miles JW, García R, Ricaurte J (2006) Selección de híbridos de Brachiaria con resistencia a aluminio. Pasturas Tropicales 28: 12-15.

Risso-Pascotto C, Pagliarini MS, Valle CB (2005) Meiotic behavior in interspeci c hybrids between Brachiaria ruziziensis and Brachiaria brizantha (Poaceae). Euphytica 145: 155-159.

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2a. ed. Cold Spring Harbor Laboratory Press, NY, USA. pp: 18.51-18.57.

Savidan Y (2000) Apomixis: Genetics and breeding. In: Janick J (Ed.). Plant Breeding Reviews Volume 18. Wiley. New York, USA. pp: 13-86.

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms ampli ed by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.

Zhang J, Stewart JMD (2000) Economical and rapid method for extracting cotton genomic DNA. The Journal of Cotton Science 4: 193-201.

Zorzatto C, Chiari L, Araújo-Bitencourt G, Do Valle CB, De Campos-Leguizamón GO, Schuster I, et al. (2010) Identi cation of a molecular marker linked to apomixis in Brachiaria humidicola (Poaceae). Plant Breeding 129: 734-736.

Publicado

2018-01-01

Número

Sección

NOTAS CIENTÍFICAS

Cómo citar

Pblete-Vargas, J., Valadez-Moctezuma, E., García-de los Santos, G., Martínez-Flores, C., & Peralta-Martínez, A. (2018). Differentiation of apomictic and sexual genotypes of Brachiaria spp., using molecular markers. Ecosistemas Y Recursos Agropecuarios, 5(13), 71-80. https://doi.org/10.19136/era.a5n13.1180

Artículos similares

51-60 de 111

También puede Iniciar una búsqueda de similitud avanzada para este artículo.