Germinación, crecimiento y producción de glucanasas en Capsicum chinense Jacq. inoculadas con Bacillus spp.

Autores/as

DOI:

https://doi.org/10.19136/era.a6n16.1801

Resumen

Las rizobacterias promueven el crecimiento vegetal e inducen la acumulación de proteínas de defensas por lo que se evaluaron aislados de Bacillus spp. con mayor producción de ácido indol acético en la germinación, crecimiento e inducción de las B-glucanasas en plántulas de chile habanero. Los aislados CBRF5, CBRF12 y CBCC57 producen ácido indol acético desde las 24 h de incubación con 6.66, 7.95 y 7.05 µg mL-1, respectivamente. Los aislados CBCC57 y CBRF5 disminuyeron el porcentaje de germinación, mientras que CBRF12 no tuvo un efecto significativo. Los aislados CBCC57 y CBRF12 aumentaron el área foliar y biomasa seca en plántulas de chile habanero. Se observó un aumento significativo en la actividad de B-glucanasas con el aislado CBCC57 en relación a los aislados CBRF12 y CBRF5. Los resultados mostraron que Bacillus CBRF12 y CBCC57 tienen potencial como promotoras en el crecimiento de plántulas de chile habanero.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Marino Sosa Pech, INSTITUTO TECNOLÓGICO DE CONKAL
    División de Estudios de Posgrado e Investigación
  • Esaú Ruiz Sánchez, INSTITUTO TECNOLÓGICO DE CONKAL
    División de Estudios de Posgrado e Investigación, Profesor-Investigador
  • José María Tun Suaréz, INSTITUTO TECNOLÓGICO DE CONKAL
    División de Estudios de Posgrado e Investigación, Profesor-Investigador
  • Luis Leonardo Pinzón López, INSTITUTO TECNOLÓGICO DE CONKAL
    División de Estudios de Posgrado e Investigación, Profesor-Investigador
  • Arturo Reyes Ramírez, INSTITUTO TECNOLÓGICO DE CONKAL
    División de Estudios de Posgrado e Investigación, Profesor-Investigador

Referencias

Abeles, FB, Forrence LE (1970) Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris L. Plant Physiology 45:395-400.

Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian Journal of Microbiology 39: 423-426.

Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243.

Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61:289-298.

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72: 248-254.

Díaz P, Torres D, Sánchez Z, Arévalo L (2013) Comportamiento morfológico de cedro (Cedrela odorata) y caoba (Swietenia macrophylla) en respuesta al tipo de sustrato en vivero. Folia Amazonica 22 (1-2): 25-33.

Díaz-Vargas P, Ferrera-Cerrato R, Almaraz-Suárez JJ, Alcantar –Gonzalez G (2001) Inoculación de bacterias promotoras de crecimiento en lechuga. Terra Latinoamericana, 19(4): 327-335.

Dickson A, Leaf AL, Hosner IE (1960) Quality appraisal of white spruce and white pine seedlings stock in nurseries. Forest Chronicle 36: 10-13.

Huang P, de-Bashan L, Crocker T, Kloepper JW, Bashan Y (2017) Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils 53(2): 199-208.

Ji SH, Gururani MA, Chuna SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research 169: 83-98.

Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266.

Kokalis-Burelle K, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil 238: 257-266.

Luna ML, Martínez PRA, Hernández IM, Arvizu MSM, Pacheco AJR (2013) caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotecnia Mexicana 36(1): 63-69.

Meudt WJ, Gaines TP (1967) Studies on the oxidation of indole-3-acetic acid by peroxidase enzymes. I. Colorimetric determination of indole-3-acetic acid oxidation products. Plant Physiology 42(10): 1395-1399.

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426–8.

Neher OT, Johnston MR, Zidack NK, Jacobsen BJ (2009) Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of Anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biological Control. 48(2): 140-146.

Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Journal of the Korean Society for Applied Biological Chemistry 24 (5): 533–542.

Park M, Chungwoo K, Yanga J, Hyoungseok L, Wansik S, Seunghwan K, Tongmin S (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research 160: 127-133.

Patten CL, BR Glick (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68: 3795-3801.

Peña-Yam LP, Ruız-Sánchez E, Barboza-Corona JE, Reyes-Ramírez A (2016) Isolation of mexican Bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv Jalapeño). Indian J Microbiol. 56(3):375–378

Ranal MA, Santana DG, Ferreira WR, Mendes-Rodriguez C (2009) Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica 32(4): 849-855.

Rodríguez AT, Ramírez MA, Falcón AB, Guridi F, Cristo E (2004) Estimulación de algunas enzimas relacionadas con la defensa en plantas de arroz (Oryza sativa, L.) obtenidas de semillas tratadas con quitosana. Cultivos Tropicales 25(3): 111-115.

Seo DJ, Nguyen DMC, Song YS, Jung WJ (2012) Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. J. Microbiol. Biotechnol. 22(3): 407-415.

Soria FM, Tun SJM, Trejo RA, Teran SR (2000) Produccion de hortalizas a cielo abierto. S.E.P.-D.G.T.A.-ITA N° 2, México 113-171 P

Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. Journal of Microbiology and Antimicrobials 3(2): 34-40.

Descargas

Publicado

2019-01-01

Número

Sección

NOTAS CIENTÍFICAS

Cómo citar

Sosa Pech, M., Ruiz Sánchez, E., Tun Suaréz, J. M., Pinzón López, L. L., & Reyes Ramírez, A. (2019). Germinación, crecimiento y producción de glucanasas en Capsicum chinense Jacq. inoculadas con Bacillus spp. Ecosistemas Y Recursos Agropecuarios, 6(16), 137-143. https://doi.org/10.19136/era.a6n16.1801

Artículos más leídos del mismo autor/a