Producción de tomate en respuesta a dosis de silicio

Autores/as

  • Luz Llarely Cazárez-Flores Facultad de Agronomía- Universidad Autónoma de Sinaloa.
  • Azaree Angulo-Castro Facultad de Agronomía- Universidad Autónoma de Sinaloa
  • Tomás Aarón Vega-Gutiérrez Facultad de Agronomía- Universidad Autónoma de Sinaloa
  • Felipe Ayala-Tafoya Facultad de Agronomía- Universidad Autónoma de Sinaloa.
  • José Antonio Aguilar- Quiñonez Facultad de Agronomía- Universidad Autónoma de Sinaloa.

DOI:

https://doi.org/10.19136/era.a10n3.3851

Palabras clave:

°Brix, crecimiento, firmeza, rendimiento, verdor.

Resumen

Existe evidencia acerca del mejoramiento de la resistencia de las plantas ante factores bióticos y abióticos, el metabolismo fotosintético y la productividad de cultivos por la fertilización con silicio. El objetivo de la investigación fue conocer la influencia del silicio en el crecimiento, rendimiento y calidad postcosecha de tomate saladette indeterminado cultivado en suelo. Se utilizó un diseño de bloques completos al azar con cuatro tratamientos (0/testigo, 20, 30 y 50 mg L-1 de silicio) y tres repeticiones. Las tres dosis de silicio en estudio fueron eficaces para aumentar diámetro de tallo, número de hojas, área foliar, índice de verdor y acidez titulable. La firmeza y contenido de sólidos solubles del fruto no fueron afectados. Mientras que, con la dosis de 50 mg L-1 se indujo el mayor rendimiento de tomate. En general, la producción de tomate mejoró significativamente con la adición de silicio al esquema de fertilización.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Rakhymberdina M, Kulenova N, Shaimardanov Z, Assylkhanova Z, Toguzova M, Kassymov D (2022) Using re- mote sensing data to support intelligent agricultural GIS to monitor the condition of arable land and crops 94: 883-888.

Raptis EK, Englezos K, Kypris O, Krestenitis M, Kapoutsis AC, Ioannidis K, Vrochidis S, Kosmatopoulos EB (2023) CoFly: An automated, AI-based open-source platform for UAV precision agriculture applications. SoftwareX 23: 101414. DOI. 10.1016/j.softx.2023.101414.

Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H (2022) Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture 198: 107017. DOI: 10.1016/j.compag.2022.107017.

Rosales-Soto A, Arechavala-Vargas R (2020) Agricultura inteligente en México: Analítica de datos como he- rramienta de competitividad. VinculaTégica EFAN 2: 1415-1427.

SADER-INIFAP (2022) Manuales prácticos para la elaboración de Bioinsumos. Ciudad de México, México.

https://www.gob.mx/agricultura/documentos/bioinsumos-transicion-agroecologica. Fecha de consulta: 05 de abril de 2023

Singh A (2022) Precision agriculture in India - Opportunities and challenges. Indian Journal of Fertilisers 18: 308-331.

Shu M, Li Q, Ghafoor A, Zhu J, Li B, Ma Y (2023) Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images. European Journal of Agronomy 151: 126957. DOI: 10.1016/j.eja.2023.126957.

Taco C, López O, Vistín M, López J (2022) Lluvia sólida como estrategia de desarrollo sostenible en el cantón Guaranda en Ecuador. Revista de la Sociedad Científica del Paraguay 27: 31-48.

Tao H, Feng H, Xu L, Miao M, Yang G, Yang X, Fan L (2020) Estimation of the yield and plant height of winter wheat using UAV-Based hyperspectral images. Sensors 20: 1231. DOI: 10.3390/s20041231.

Tahir MN, Lan Y, Zhang Y, Wenjiang H, Wang Y, Naqvi SMZA (2023) Application of unmanned aerial vehicles in precision agriculture. In: Zaman Q (ed) Precision Agriculture. Academic Press. Massachusetts, USA. pp: 55-70.

Upadhyaya A, Jeet P, Sundaram P (2022) Efficacy of drone technology in agriculture: A review. Journal of AgriSearch 9: 189-195.

Yu J, Zhang S, Zhang Y, Hu R, Lawi AS (2023) Construction of a winter wheat comprehensive growth monitoring index based on a fuzzy degree comprehensive evaluation model of multispectral UAV data. Sensors 23(19): 8089. DOI: 10.3390/s23198089

Zhang X, Zhang K, Sun Y, Zhao Y, Zhuang H, Ban W, Chen Y, Fu E, Chen S, Liu J, Hao Y (2022). Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Re- mote Sensing 14(2): 331. DOI: 10.3390/rs14020331.

Kaur H, Greger M (2019) A review on Si uptake and transport system. Plants 8: 81. DOI: 10.3390/plants8040081.

Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer Dordrecht. 235p.

Moraes JC, Goussain MM, Basagli MAB, Carvalho GA, Ecole CC, Sampaio MV (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotropical Entomology 33: 619-624.

Ortega-Ramirez AT, Torres-López CA, Silva-Marrufo O, Moreno-Barriga LA (2023) Validación sintética de suelos contaminados por hidrocarburos pesados. caso de estudio. Fuentes, el Reventón Energético 21: 83-93.

Sariñana AO, Garcia TMI, Preciado RP, Silva MO, Lara REA (2023) Agronomic 197 and metabolomic response of melon (Cucumis melo L.) seedlings under the application of high indole-198 3-acetic acid concentrations: Agronomic and metabolomic response of melon. Biotecnia 25(3): 16-24.

SIAP (2022) Escenario mensual de productores agroalimentarios. Servicio de Información Agroalimentaria y Pesquera. https://www.gob.mx/siap/documentos/reporte-mensual-de-escenarios-de-18-productos-agroali- mentarios-2022. Fecha de consulta: 11 de abril de 2023.

Silva-Marrufo O, Marín-Tinoco RI, Castañeda-Venegas JA (2020) Effect of potassium iodide and salicylic acid in the cultivation of hydroponic strawberries (Fragaria L). Journal-Agrarian and Natural Resource Economics 84: 17-23.

USDA (1997) United States standards for grades of fresh tomatoes. United States Department of Agriculture, Washington DC. USA. 13p.

Villalba-Campos L, Herrera-Arévalo AO, Orduz-Rodríguez JO (2014) Parámetros de calidad en la etapa de de- sarrollo y maduración en frutos de dos variedades y un cultivar de mandarina (Citrus reticulata Blanco). Orinoquia 18: 21-34.

Yaghubi K, Vafaee Y, Ghaderi N, Javadi T (2019) Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis 50: 1439-1451.

Yan G-C, Nikolic M, Ye M-J, Xiao Z-X, Liang Y-C (2018) Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture 17: 2138-2150.

Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R (2019) Role of silicon in plant stress tolerance: opportu- nities to achieve a sustainable cropping system. 3 Biotech 9: 73. DOI: 10.1007/s13205-019-1613-z.

Descargas

Publicado

2023-12-19

Cómo citar

Cazárez-Flores, L. L., Angulo-Castro, A., Vega-Gutiérrez, T. A., Ayala-Tafoya, F., & Aguilar- Quiñonez, J. A. (2023). Producción de tomate en respuesta a dosis de silicio. Ecosistemas Y Recursos Agropecuarios, 10(3). https://doi.org/10.19136/era.a10n3.3851

Número

Sección

NOTAS CIENTÍFICAS

Artículos más leídos del mismo autor/a