In-silico analysis of pharmacokinetic properties and molecular targets of lignans and terpenes from Bursera microphylla

Authors

  • Heriberto Torres-Moreno Universidad de Sonora
  • Julio César López-Romero Universidad de Sonora
  • Karen Lillian Rodríguez-Martínez Universidad Estatal de Sonora
  • David Edgardo Peraza-Figueroa Universidad de Sonora
  • Beatríz Adriana Salcido-Gonález Departamento de Ciencias Químico Biológicas, Universidad de Sonora
  • Ailyn Oros-Morales Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte
  • Ramón Enrique Robles-Zepeda Departamento de Ciencias Químico Biológicas, Universidad de Sonora

DOI:

https://doi.org/10.19136/era.a10nNEIII.3730

Keywords:

Bursera microphylla, pharmacokinetics, lignans, terpenes, ADME profile.

Abstract

Bursera microphylla A. Gray (Burseraceae) is a Mexican medicinal plant with outstanding antiproliferative and antiinflammatory potential in vitro that has been associated with the presence of lignan and triterpenoid compounds, however, the pharmacokinetic properties (absorption, distribution, metabolism, and excretion - ADME) and the possible pharmacological targets of these compounds are unknown. The objective of this study was to establish in-silico the ADME profile of the bioactive metabolites of B. microphylla and to analyze the main molecular targets that are potentially inhibited by these compounds. ADME analysis of the B. microphylla compounds (14 lignans and 10 terpenes) was performed using the SwissADME tool. The in-silico determination of the potential therapeutic target was performed using the SwissTargetPrediction program. In general, the lignans and terpenes of B. microphylla presented a favorable ADME profile. The predictive analysis showed that hinokinin inhibits the dopamine (DAT) and norepinephrine (NET) transporters. For its part, β-caryophyllene recognizes the cannabinoid receptor type 2 (CB2). Compounds with antiproliferative activity such as ariensin, burseran, dihydroclusin, picropoligamain,
and burseranin showed high oral bioavailability. All the compounds analyzed showed the ability to inhibit enzymes of hepatic metabolism, such as CYP1A2 and CYP2C19. The acceptable pharmacokinetic and pharmacodynamic properties of the lignans and terpenes of B. microphylla position them as good prospects to be evaluated in animal models of inflammation, analgesia, cancer, and psychiatric diseases. The potential inhibition of CYPs is an aspect that must be considered to avoid adverse reactions in a combination therapy.

Downloads

Download data is not yet available.

References

Adorisio S, Fierabracci A, Gigliarelli G, Muscari I, Cannarile L, Liberati AM, Marcotullio MC, Riccardi C, Curini M, Robles Zepeda RE, Delfino DV (2017) The Hexane Fraction of Bursera microphylla A. Gray Induces p21-Mediated Antiproliferative and Proapoptotic Effects in Human Cancer-Derived Cell Lines. Integrative Cancer Therapies 16: 426-435.

Bradley C, Haagen-Smit A (1951) The essential oil of Bursera microphylla. Journal of the American Pharmacists Association 40: 591-592.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68: 394-424.

Bylund D (2003) Norepinephrine. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the Neurological Sciences. 3ra Edición. Elsevier Science Inc. EE. UU. pp: 638-640.

Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences 30: 211-219.

Daina A, Michelín O, Zoete V (2017) SwissADME: a free tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports 7: 42727. DOI: 10.1038/srep42717

Gigliarelli G, Zadra C, Cossignani L, Robles Zepeda RE, Rascón-Valenzuela LA, Velázquez-Contreras CA, Marcotullio MC (2018) Two new lignans from the resin of Bursera microphylla A. gray and their cytotoxic activity. Natural Product Research 32: 2646-2651.

Grotenhermen F (2006) Los cannabinoides y el sistema endocannabinoide. Cannabinoids 1: 10-14

Hernández-Quellar CE, Castrillón-Martínez E, Gallego-Gómez JC (2020) Descubrimiento de fármacos basado en imagenología de células vivas. Revista Colombiana de Ciencias Químico - Farmacéuticas 49: 114-136.

Juárez-Olguín H, Sandoval-Ramírez E, Guillé-Pérez A (2009) Comportamiento del proceso LADME de los medicamentos en niños. Acta Pedriátrica de México 30: 23-30.

Kerns E, Di L (2008) Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization. 1st Edition. Academic Press. Amsterdam, Netherlands. 228p.

Levalle OA, Lalosa S (2015) Implicancias fisiopatológicas del receptor androgénico: Mutaciones, polimorfismos y patologías. Revista Argentina de Endocrinología y Metabolismo 52: 79-107.

Lu Q, Zheng R, Zhu P, Bian J, Liu Z, Du J (2021) Hinokinin alleviates high fat diet/streptozotocin-induced cardiac injury in mice through modulation in oxidative stress, inflammation and apoptosis. Biomedicine and Pharmacotherapy 137. DOI: 10.1016/j.biopha.2021.111361.

Lu S, Fan X, Wang H, Zhao Y, Zhao W, Li M, Lv R, Wang T, Sun T (2020) Synthesis of Gelatin-Based Dual- Targeted Nanoparticles of Betulinic Acid for Antitumor Therapy. ACS Applied Bio Materials 3: 3518-3525.

Li X, Hua T, Vemuri K, Ho JH, Wu Y, Wu L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han GW, Iyer MR, Cinar R, Coffey NJ, Wang J, Wu M, Katritch V, Zhao S, Kunos G, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2019) Crystal structure of the human cannabinoid receptor CB2. Cell 176: 459-467.

Márquez L, Abanades S, Andreu M (2008) Sistema endocannabinoide e inflamación intestinal. Medicina Clínica 131: 513-517.

Messina F, Curini M, Di Sano C, Zadra C, Gigliarelli G, Rascón-Valenzuela LA, Robles-Zepeda RE, Marcotullio MC (2015) Diterpenoids and triterpenoids from the resin of Bursera microphylla and their cytotoxic activity. Journal of Natural Products 78: 1184-1188.

Mostaza JM, Lahoz C, Morales-Olivas F, Pinto X, Tranche S, Suarez-Tembra M, Mantilla T, Rius J (2014) Riesgo de interacciones farmacológicas por la coadministración de estatinas con fármacos metabolizados por la isoenzima 3A4 del citocromo P450: estudio epidemiológico, transversal y multicéntrico. Medicina Clínica 143: 427-432.

NCI (2015) El cáncer. Causas y prevención. Factores de riesgo. Inflamación crónica. National Cancer Institute. United States of American. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/inflamacioncronica.

Fecha de consulta: 14 de enero del 2023.

Peralta G, Sánchez MB, Echeverría S, Valdizán EM, Armijo JA (2008) Glucoproteína P e infección por el virus de la inmunodeficiencia humana. Enfermedades Infecciosas y Microbiología Clínica 26: 150-159.

Prieto-Martínez FD, Medina-Franco JL, Prieto-Martínez FD, Medina-Franco JL (2018) Diseño de fármacos asistido por computadora: cuando la informática, la química y el arte se encuentran. TIP Revista Especializada En Ciencias Químico-Biológicas 21: 124-134.

Quiñones S, Luis, Rosero P, Mario, Roco A, Ángela, Moreno T, Iván, Sasso A, Jaime, Varela F, Nelson, Cáceres L, Dante, Saavedra S (2008) Role of cytochrome P450 enzymes in the metabolism of antineoplastic drugs. Revista Médica de Chile 136: 1327-1335.

Reith Maarten EA, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann M, Katz JL (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug and Alcohol Dependence 147: 1-19.

Reith Maarten EA, Xu Cen, Chen, Nian-Hang (1997) Pharmacology and regulation of the neuronal dopamine transporter. European Journal of Pharmacology 324(1): 1-10. DOI: 10.1016/s0014-2999(97)00065-4

Sánchez C, Valenzuela Y, Pérez-Sepúlveda A, Villarroel A, Medina L, Camus M, Acevedo F (2018) Systemic therapy for estrogen receptor positive advanced breast cancer. Revista Chilena de Cirugía 70: 464-473.

Schmitt KC, Rothman RB, Reith ME (2013) Nonclassical pharmacology of the dopamine transporter: atypical inhibitoris, allosteric modulators, and patrial substrates. Journal of Pharmacology and Experimental Therapeutics 346: 2-10.

Schroeder C, Jordan J (2012) Norepinephrine transporter function and human cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology 303: 1273-1282.

Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, Sali A (2011) Structure-based Discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proceedings of the National Academy of Sciences 108: 15810-15815.

Shebaby W, Saliba J, Faour WH, Ismail J, El Hage M, Daher CF, Taleb RI, Nehmeh B, Dagher C, Chrabieh E, Mroueh M (2021) In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). Journal of Ethnopharmacology 270: 113743. DOI: 10.1016/j.jep.2020.113743

SIB (2022) SwissTargetPrediction. Grupo de Modelaje Molecular. Instituto Suizo de Bioinformática. Lausana, Suiza. http://www.swisstargetprediction.ch/. Fecha de consulta: 25 de enero de 2023.

Smith MD, Maani CV (2023) Norepinephrine. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/ books/NBK537259/ Fecha de consulta: 15 de enero del 2023.

Torres-Moreno H, López-Romero JC, Vidal-Gutiérrez M, Rodríguez-Martínez KL, Robles-Zepeda RE, Vilegas W, Velarde-Rodríguez GM (2022) Seasonality impact on the anti-inflammatory, antiproliferative potential and the lignan composition of Bursera microphylla. Industrial Crops and Products 184: 115095. DOI: 10.1016/j.indcrop.2022.115095

Verstuyft C, Becquemont L, Mouly S (2022) Farmacocinética de los medicamentos. EMC - Tratado de Medicina 26: 1636-5410.

Vidal-Gutiérrez M, Robles-Zepeda RE, Vilegas W, Gonzalez-Aguilar GA, Torres-Moreno H, López-Romero JC (2020) Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Industrial Crops Products 152: 112412. DOI: 10.1016/j.indcrop.2020.112412

Williams JM, Galli A (2006) The dopamine transporter: a vigilant border control for psychostimulant action. Handb Exp Pharmacol 175: 215-32.

Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X, Liang X, Tan M, Huang Z (2022) Computational Approaches in Preclinical Studies on Drug Discovery and Development. Frontiers in Chemistry 8: 726. DOI: 10.3389/fchem.2020.00726

Zhou J (2004) Norepinephrine transporter inhibitors and their therapeutic potential. Drugs of the future 29(12): 1235. DOI: 10.1358/dof.2004.029.12.855246.

Downloads

Published

2024-01-11

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Torres-Moreno, H., López-Romero, J. C., Rodríguez-Martínez, K. L., Peraza-Figueroa, D. E., Salcido-Gonález, B. A., Oros-Morales, A., & Robles-Zepeda, R. E. (2024). In-silico analysis of pharmacokinetic properties and molecular targets of lignans and terpenes from Bursera microphylla. Ecosistemas Y Recursos Agropecuarios, 10(NEIII). https://doi.org/10.19136/era.a10nNEIII.3730

Similar Articles

1-10 of 46

You may also start an advanced similarity search for this article.