In vitro Chemical and Fermentative Characteristics of Cynodon nlemfuensis Vanderyst and Guazuma ulmifolia Lam

Authors

DOI:

https://doi.org/10.19136/era.a12nNEIV.4034

Keywords:

Biogas, fermentation, forage, livestock, tropic

Abstract

The objective consisted into the evaluation in vitro about the chemical and ferment characteristics mixing of the Estrella grass (Cynodon nlemfuensis; Cn) with an increase level of guacima (Guazuma ulmifolia; Gu). Four biodigester with a capacity fill of 2 000 mL individually, in which one, it was added 200 mL of mid cultive plus the treatments: T1: 20 g Cn (control); T2: 16 g Cn + 4.0 g Gu; T3: 12 g Cn+8 g Gu; T4: 8 g Cn + 12 g Gu. Treatments were inoculated with 20 mL of ruminal liquid, and they were kept during, 24, 48, 72 and 96 h in a temperature of 38 °C. The experiment design was a complement randomly measure with Tukey mean comparison test. In the results they were evaluated the productions of biogas, methane (CH4), volatile fatty acids (VFA), total bacterial concentrations (TBC) so the cellulolytic bacteria (CB), including the pH. The inclusion on guacima in the mixing allowed the reduction of fermentable cell walls, which result with less production of CH4. There were changes in the fermentation patrons of VFA, decreasing on the relation of acetate: propionate. The control treatment had the highest concentration of CB, without differences in the treatments based on the CBT. Although the pH which was up 6.0, it did not compromise the stability of the cultivation medias. The presence of guácima in the fermentations in vitro were contributed to mitigate the production of biogas and CH4, which get better the production of propionic acid.

Downloads

Download data is not yet available.

References

AOAC (2012) Official Methods of Analysis. 19th Edition. Association of Official Analytical Chemists. Gaithersburg, Mary Land, USA. Chapter 4: 1-44.

Appuhamy J, France J, Kebreab K (2016) Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and Zealand. Global Change Biology 22: 3039-3056.

Araujo RC, Pires AV, Mourão GB, Abdalla AL, Sallam SMA (2011) Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Animal Feed Science and Technology 166-167: 155-162.

Chen Y, Penner GB, Li M, Oba M, Guan LG (2011) Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high grain diet. Applied and Environmental Microbiology 77: 5770-5781.

Chuntrakort P, Otsuka M, Hayashi K, Takenaka A, Udchachon S, Sommart K (2014) The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw-based diets. Live Science 161: 80-89.

Cobos MA (2007) Interacción entre microorganismos ruminales. In: Ferrera-Cerrato R, Alarcón A (eds) Microbiología agrícola. Hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Trillas. Ciudad de México. pp. 498-516.

Elghandour MMY, Kholif AE, Lopez S, Mendoza GD, Odongo NE, Salem AZM (2016) In vitro gas, methane and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses fed live yeasts in response to the supplementation with different yeast additives. Journal of Equine Veterinary Science 38: 64 71. https://doi.org/10.1016/j.jevs.2015.12.010

Fulkerson W, Neal J, Clark C, Horadagoda A, Nandra K, Barchia I (2007) Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: grasses and legumes. Live Science 107: 253-264.https://doi.org/10.1016/j.livsci.2006.09.029

Galindo J, García C, Marrero Y, Castillo E, Aldana AI, Torres V, Sarduy L (2007) Efecto de la composición del pastizal de Leucaena leucocephala con gramíneas en la población microbiana ruminal de toros. Revista Cubana de Ciencia Agrícola 41: 145-148.

Gaviria X, Naranjo JF, Barahona R (2015) Cinética de fermentación in vitro de Leucaena leucocephala y Megathyrsus maximus y sus mezclas, con o sin suplementación energética. Revista Pastos y Forrajes 38: 55-63.

Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Enfrentando el cambio climático a través de la ganadería – Una evaluación global de las emisiones y oportunidades de mitigación. Organización de las naciones unidas para la alimentación y la agricultura (FAO), Roma. 129 pp. https://www.fao.org/4/i3437s/i3437s.pdf

Harrigan WF, McCance EM (1979). Métodos de Laboratorio en Microbiología de los Alimentos y Productos Lácteos. Ed. Academia. León, España. 420 pp.

Holter JB, Young AJ (1992) Methane prediction in dry and lactating Holstein cows. Journal of Dairy Science 75: 2165-2175.

Ku-Vera JC, Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Arroyave-Jaramillo J, Montoya-Flores MD, Lazos-Balbuena FJ, Canul-Solís JR, Arceo-Castillo JI, Ramírez-Cancino L, Escobar-Restrepo CS, Alayón-Gamboa JA, Jiménez-Ferrer G, Zavala-Escalante LM, Castelán-Ortega OA, Quintana-Owen P, Ayala-Burgos AJ, Aguilar-Pérez CF, Solorio-Sánchez FJ (2018) Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and Forest Meteorology 258: 3-7. https://doi.org/10.1016/j.agrformet.2018.01.008

Ley-de-Coss A, Guerra-Medina C, Montañez-Valdez O, Guevara-Hernández F, Pinto-Ruíz R, Reyes-Gutiérrez J (2018) In vitro production of gas methane by tropical grasses. Revista MVZ Córdoba 23: 6788-6798. https://doi.org/10.21897/rmvz.1368

Ley-de-Coss A, de León W, Guerra-Medina CE, Arce-Espino C, Pinto R (2016) Crecimiento de bacterias ruminales en un medio de cultivo a base de pasta de Jatropha curcas L. sin detoxificar. Agrociencia 50: 1001-1011.

Lopez D, Vazquez-Armijo JF, Lopez-Villalobos N, Lee-Range HA, Salem AZM, Borquez-Gastelum JL, Domínguez-Vara IA, Rojo-Rubio R (2016) In vitro gas production of foliage from three browse tree species treated with different dose levels of exogenous fibrolytic enzymes. Journal of Animal Physiology and Animal Nutrition 100: 920-928. https://doi.org/10.1111/jpn.12467

NRC (2016) National Research Council. National Academy of Science, Nutrient Requirements of beef cattle. Committee of Nutrient Requirements of beef cattle. Eight editions. Washington DC. National Academy Press. 475p. https://doi.org/10.17226/19014

Piñeiro-Vazquez AT, Canul-Solís JR, Alayon-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC (2017) Energy utilization, nitrogen balance and microbial protein supply in cattle fed Pennisetum purpureum and condensed tannins. Journal of Animal Physiology and Animal Nutrition 101: 159-169.https://doi.org/10.1111/jpn.12436

Rivas-Martínez MI, Cobos-Peralta MA, Ley-de-Coss A, Bárcena-Gama JR, González-Muñoz SS (2023) Producción de metano in vitro y características fermentativas de gramíneas forrajeras templadas y tropicales. Ecosistemas y Recursos Agropecuarios 10(1): e3393. https://doi.org/10.19136/era.a10n1.3393

Sánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado-Iglesias A, Espinosa-Victoria D, Herrera-Haro JG (2016) Uso de carbón activado para conservar bacterias celulolíticas liofilizadas. Agrociencia 50: 575-582.

Sánchez-Santillán P, Torres-Cardona MG, Soriano-Robles RG, Fernández-Luqueño F, Medina-Pérez G, O. del Razo-Rodriguez E, Almaraz-Buendía I (2018) Potencial de emisión de gases efecto invernadero de plantas forrajeras por fermentación entérica. Agroproductividad 11(2): 40-45.

SAS (2011) Statistical Analysis System, SAS/STAT. Version 9.3. User’s Guide: SAS Inst., Cary, NC. Pp 177-178 y 349-356. https://support.sas.com/ documentation/onlinedoc/base/procstat93m1.pdf. Fecha de consulta: 10 de enero de 2019.

Sung HG, Kobayashi Y, Chang J, Ha A, Wang H, Ha JK (2007) Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Australasian Journal of Animal Sciences 20(2): 200-207. https://doi.org/10.5713/ajas.2007.200

Torres-Salado N, Sánchez-Santillán P, Rojas-García RA, Almaraz-Buendía I, Herrera-Pérez J, Reyes-Vázquez I, Mayren-Mendoza FJ (2019) Producción de gas in vitro y características fermentativas de consorcios bacterianos celulolíticos ruminales de búfala de agua (Bubalus bubalis) y vaca Suiz-bu. Agrociencia 53: 145-159.

Van-Soest PJ, Robertson B, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science 74: 3583-3597.

Vanegas JL, González J, Carro MD (2017) Influence of protein fermentation and carbohydrate source on in vitro methane production. Journal of Animal Physiology and Animal Nutrition 101: e288-e296. https://doi.org/10.1111/jpn.12604

Velez-Terranova M, Campos-Gaona R, Sánchez-Guerrero H, Giraldo LA (2018) Fermentation dynamics and methane production of diets based on Brachiaria humidicola with high inclusion levels of Enterolobium schomburgkii and Senna occidentalis in a Rusitec System. Tropical and Subtropical Agroecosystems 21: 163-175. http://dx.doi.org/10.56369/tsaes.2264

Downloads

Published

2024-12-13

Issue

Section

SCIENTIFIC ARTICLE

How to Cite

Ley de Coss, A., Guerra Medina, C. E., Martínez Córdova , B., Escobar España, J. C., Morales Aguilar, J., & Montañez-Valdez, O. D. (2024). In vitro Chemical and Fermentative Characteristics of Cynodon nlemfuensis Vanderyst and Guazuma ulmifolia Lam. Ecosistemas Y Recursos Agropecuarios, 11(IV). https://doi.org/10.19136/era.a12nNEIV.4034

Similar Articles

1-10 of 96

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)